2020 Volume 15 Issue 6
Article Contents

Wang Shuang, Lu Zhen, Li Fei, Cong Ming, Ji Chenglong, Wu Huifeng. A Review of Pollution Status and Toxicological Researches of Typical Brominated Flame Retardants Tetrabromobisphenol A (TBBPA) and Decabromodiphenyl Ethane (DBDPE)[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 24-42. doi: 10.7524/AJE.1673-5897.20190804003
Citation: Wang Shuang, Lu Zhen, Li Fei, Cong Ming, Ji Chenglong, Wu Huifeng. A Review of Pollution Status and Toxicological Researches of Typical Brominated Flame Retardants Tetrabromobisphenol A (TBBPA) and Decabromodiphenyl Ethane (DBDPE)[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 24-42. doi: 10.7524/AJE.1673-5897.20190804003

A Review of Pollution Status and Toxicological Researches of Typical Brominated Flame Retardants Tetrabromobisphenol A (TBBPA) and Decabromodiphenyl Ethane (DBDPE)

  • Corresponding author: Wu Huifeng, hfwu@yic.ac.cn
  • Received Date: 04/08/2019
    Fund Project:
  • With hexabromocyclododecane (HBCDs) and poly brominated diphenyl ethers (PBDEs) listed as persistent organic pollutants (POPs), tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE) have become two of the most widely produced and used brominated flame retardants (BFRs). The underlying ecological risk of TBBPA and DBDPE have received increasing attentions since these two typical BFRs are being detected at high concentrations in environmental media. This paper summarized the pollution status of TBBPA and DBDPE and their toxicological effects. TBBPA and DBDPE have been detected in multiple environmental media, such as atmosphere, waters, soil, sediment and organisms. In addition, more severe pollution could be found in industrial areas. TBBPA and DBDPE were even found in human body and breast milk. Overall, TBBPA presented developmental toxicity, hepatorenal toxicity, endocrine disruption effect, reproductive toxicity, and neurotoxicity, while DBDPE showed developmental toxicity, hepatorenal toxicity, and endocrine disruption effect. According to the limited reports on DBDPE toxicity, we concluded that DBDPE was of relatively low toxicity. The aim of this review is to help evaluate the environmental risk, analyze the environmental capacity, and governmentally control the production of TBBPA and DBDPE.
  • 加载中
  • Hardy M L, Krueger H O, Blankinship A S, et al. Studies and evaluation of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms[J]. Ecotoxicology and Environmental Safety, 2012, 75(1):73-79

    Google Scholar Pub Med

    Mäkinen M S, Mäkinen M R, Koistinen J T, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments[J]. Environmental Science & Technology, 2009, 43(3):941-947

    Google Scholar Pub Med

    张帆, 余应新, 张东平, 等. 溴系阻燃剂在环境及人体中的存在和代谢转化[J]. 化学进展, 2009, 21(6):1364-1372 Zhang F, Yu Y X, Zhang D P, et al. Metabolism and transformation of brominated flame retardants existing in environment and human body[J]. Progress in Chemistry, 2009, 21(6):1364-1372(in Chinese)

    Google Scholar Pub Med

    Shen K H, Li L, Liu J Z, et al. Stocks, flows and emissions of DBDPE in China and its international distribution through products and waste[J]. Environmental Pollution, 2019, 250:79-86

    Google Scholar Pub Med

    唐量. 多溴联苯醚及十溴二苯乙烷在上海市典型环境介质中的分布及生态风险评估[D]. 上海:上海大学, 2012:5-20 Tang L. Preliminary studies of polybrominated diphenyl ether and decabromodiphenyl ethane in various typical environmental media in Shanghai[D]. Shanghai:Shanghai University, 2012:5 -20(in Chinese)

    Google Scholar Pub Med

    Vorkamp K, Balmer J, Hung H, et al. Current-use halogenated and organophosphorous flame retardants:A review of their presence in Arctic ecosystems[J]. Emerging Contaminants, 2019, 5:179-200

    Google Scholar Pub Med

    Liu A F, Qu G B, Yu M, et al.Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea:Implications for trophic transfer[J]. Environmental Science & Technology, 2016, 50(8):4203-4211

    Google Scholar Pub Med

    Birnbaum L S, Staskal D F. Brominated flame retardants:Cause for concern?[J]. Environmental Health Perspectives, 2004, 112(1):9-17

    Google Scholar Pub Med

    Sellström U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples[J]. Chemosphere, 1995, 31(4):3085-3092

    Google Scholar Pub Med

    Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants[J]. Science, 2007, 317(5835):236-239

    Google Scholar Pub Med

    Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web[J]. Environmental Toxicology and Chemistry, 2006, 25(8):2177-2186

    Google Scholar Pub Med

    Covaci A, Harrad S, Abdallah M A, et al. Novel brominated flame retardants:A review of their analysis, environmental fate and behavior[J]. Environment International, 2011, 37(2):532-556

    Google Scholar Pub Med

    Streets S S, Henderson S A, Stoner A D, et al. Partitioning and bioaccumulation of PBDEs and PCBs in Lake Michigan[J]. Environmental Science & Technology, 2006, 40(23):7263-7269

    Google Scholar Pub Med

    Zhu B Q, Lai N L S, Wai T C, et al. Changes of accumulation profiles from PBDEs to brominated and chlorinated alternatives in marine mammals from the South China Sea[J]. Environment International, 2014, 66:65-70

    Google Scholar Pub Med

    李亚宁, 周启星. 四溴双酚-A的代谢转化与生态毒理效应研究进展[J]. 生态学杂志, 2008, 27(2):263-268 Li Y N, Zhou Q X. Metabolic transformation and ecotoxicology of tetrabromobisphenol A:A review[J]. Chinese Journal of Ecology, 2008, 27(2):263-268(in Chinese)

    Google Scholar Pub Med

    朱冰清, 史薇, 胡冠九. 中国海洋环境中卤代阻燃剂的污染现状与研究进展[J]. 环境化学, 2017, 36(11):2408-2423 Zhu B Q, Shi W, Hu G J. The pollution status and research progress on halogenated flame retardants in China marine environment[J]. Environmental Chemistry, 2017, 36(11):2408-2423(in Chinese)

    Google Scholar Pub Med

    Jakobsson K, Thuresson K, Rylander L, et al. Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians[J]. Chemosphere, 2002, 46(5):709-716

    Google Scholar Pub Med

    Environment Canada. Guidance manual for the categorization of organic and inorganic substances on Canada's Domestic Substances List:Determining persistence, bioaccumulation potential, and inherent toxicity to non-human organisms. Existing Substances Program (CD-ROM)[R]. Ottawa:Environment Canada, 2004

    Google Scholar Pub Med

    Johnson-Restrepo B, Adams D H, Kannan K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States[J]. Chemosphere, 2008, 70(11):1935-1944

    Google Scholar Pub Med

    Liu K, Li J, Yan S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China[J]. Chemosphere, 2016, 148:8-20

    Google Scholar Pub Med

    Ma J, Qiu X H, Zhang J L, et al. State of polybrominated diphenyl ethers in China:An overview[J]. Chemosphere, 2012, 88(7):769-778

    Google Scholar Pub Med

    肖潇, 陈德翼, 梅俊, 等. 贵屿某电子垃圾拆解点附近大气颗粒物中氯代/溴代二英、四溴双酚A污染水平研究[J]. 环境科学学报, 2012, 32(5):1142-1148 Xiao X, Chen D Y, Mei J, et al. Particle-bound PCDD/Fs, PBDD/Fs and TBBPA in the atmosphere around an electronic waste dismantling site in Guiyu, China[J]. Acta Scientiae Circumstantiae, 2012, 32(5):1142-1148(in Chinese)

    Google Scholar Pub Med

    Sjödin A, Carlsson H, Thuresson K, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments[J]. Environmental Science & Technology, 2001, 35(3):448-454

    Google Scholar Pub Med

    Ni H G, Zeng H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China[J]. The Science of the Total Environment, 2013, 458-460:15-19

    Google Scholar Pub Med

    Takigami H, Suzuki G, Hirai Y, et al. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan[J]. Chemosphere, 2009, 76(2):270-277

    Google Scholar Pub Med

    Abdallah M A, Harrad S, Covaci A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, U.K:Implications for human exposure[J]. Environmental Science & Technology, 2008, 42(18):6855-6861

    Google Scholar Pub Med

    Alaee M, Muir D, Cannon C, et al. Sources, occurrence, trends and pathways in the physical environment[R]//Bidleman T, Macdonald R, Stow J. (Eds.). Canadian Arctic Contaminants Assessment Report Ⅱ. Ottawa:Indian and Northern Affairs Canada, 2003

    Google Scholar Pub Med

    Kronimus A, Schwarzbauer J. Non-target screening of extractable and non-extractable organic xenobiotics in riverine sediments of Ems and Mulde Rivers, Germany[J]. Environmental Pollution, 2007, 147(1):176-186

    Google Scholar Pub Med

    Xu J, Zhang Y, Guo C S, et al. Levels and distribution of tetrabromobisphenol A and hexabromocyclododecane in Taihu Lake, China[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2249-2255

    Google Scholar Pub Med

    He M J, Luo X J, Yu L H, et al. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China:Vertical profile, phase partition, and bioaccumulation[J]. Environmental Pollution, 2013, 179:105-110

    Google Scholar Pub Med

    Xiong J K, Li G Y, An T C, et al. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China[J]. Environmental Pollution, 2016, 219:596-603

    Google Scholar Pub Med

    Suzuki S, Hasegawa A. Determination of hexabromocyclododecane diastereoisomers and tetrabromobisphenol A in water and sediment by liquid chromatography/mass spectrometry[J]. Analytical Sciences, 2006, 22(3):469-474

    Google Scholar Pub Med

    Yang S W, Wang S R, Liu H L, et al. Tetrabromobisphenol A:Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China[J]. Environmental Science and Pollution Research, 2012, 19(9):4090-4096

    Google Scholar Pub Med

    彭浩. 环境及生物样品中溴代阻燃剂四溴双酚-A(TBBP-A)水平的研究[D]. 北京:中央民族大学, 2007:10-14

    Google Scholar Pub Med

    Morris S, Allchin C R, Zegers B N, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J]. Environmental Science & Technology, 2004, 38(21):5497-5504

    Google Scholar Pub Med

    Feng A H, Chen S J, Chen M Y, et al.Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in Southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD[J]. Marine Pollution Bulletin, 2012, 64(5):919-929

    Google Scholar Pub Med

    Liu H H, Hu Y J, Luo P, et al. Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone:Association with urbanization and industrialization[J]. Environmental Science & Technology, 2014, 48(15):8465-8473

    Google Scholar Pub Med

    Oberg K, Warman K, Oberg T. Distribution and levels of brominated flame retardants in sewage sludge[J]. Chemosphere, 2002, 48(8):805-809

    Google Scholar Pub Med

    Li H R, La Guardia M J, Liu H H, et al. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China e-waste recycling zone[J]. The Science of the Total Environment, 2019, 646:58-67

    Google Scholar Pub Med

    Zhu Z C, Chen S J, Zheng J, et al. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China[J]. The Science of the Total Environment, 2014, 481:47-54

    Google Scholar Pub Med

    Huang D Y, Zhao H Q, Liu C P, et al. Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China[J]. Environmental Science and Pollution Research International, 2014, 21(9):5818-5826

    Google Scholar Pub Med

    Xu T, Wang J, Liu S Z, et al. A highly sensitive and selective immunoassay for the detection of tetrabromobisphenol A in soil and sediment[J]. Analytica Chimica Acta, 2012, 751:119-127

    Google Scholar Pub Med

    Ashizuka Y, Nakagawa R, Hori T, et al. Determination of brominated flame retardants and brominated dioxins in fish collected from three regions of Japan[J]. Molecular Nutrition & Food Research, 2008, 52(2):273-283

    Google Scholar Pub Med

    任子贺, 曾艳红, 唐斌, 等. 水生和陆生生物体中卤系阻燃剂的差异性富集研究:以鲶鱼和家鸽为例[J]. 生态毒理学报, 2018, 13(1):163-168 Ren Z H, Zeng Y H, Tang B, et al. Bioaccumulative characteristics of halogenated flame retardants in aquatic and terrestrial biotas:A case study of catfish and pigeons[J]. Asian Journal of Ecotoxicology, 2018, 13(1):163-168(in Chinese)

    Google Scholar Pub Med

    Salapasidou M, Samara C, Voutsa D. Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece[J]. Atmospheric Environment, 2011, 45(22):3720-3729

    Google Scholar Pub Med

    Shi Z X, Wu Y N, Li J G, et al. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes:Occurrence measurements in foods and human milk[J]. Environmental Science & Technology, 2009, 43(12):4314-4319

    Google Scholar Pub Med

    Cariou R, Antignac J P, Marchand P, et al. New multiresidue analytical method dedicated to trace level measurement of brominated flame retardants in human biological matrices[J]. Journal of Chromatography A, 2005, 1100(2):144-152

    Google Scholar Pub Med

    Barghi M, Shin E S, Choi S D, et al. HBCD and TBBPA in human scalp hair:Evidence of internal exposure[J]. Chemosphere, 2018, 207:70-77

    Google Scholar Pub Med

    江田田, 朱丽岩, 韩萃, 等. 渤、黄海浮游动物对四溴双酚A生物富集的研究[J]. 中国海洋大学学报:自然科学版, 2018, 48(5):51-58 Jiang T T, Zhu L Y, Han C, et al. The study on accumulation of tetrabromobisphenol-A in zooplankton of Bohai Sea and Yellow Sea[J]. Periodical of Ocean University of China, 2018, 48(5):51-58(in Chinese)

    Google Scholar Pub Med

    Labadie P, Tlili K, Alliot F, et al. Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2):865-875

    Google Scholar Pub Med

    Gao C J, Xia L L, Wu C C, et al. The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China[J]. Environmental Pollution, 2019, 252(Pt B):1810-1818

    Google Scholar Pub Med

    Matsukami H, Tue N M, Suzuki G, et al. Flame retardant emission from e-waste recycling operation in northern Vietnam:Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs[J]. The Science of the Total Environment, 2015, 514:492-499

    Google Scholar Pub Med

    Yu C H, Hu B. Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography[J]. Journal of Chromatography A, 2007, 1160(1-2):71-80

    Google Scholar Pub Med

    Covaci A, Voorspoels S, Abdallah M A, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363

    Google Scholar Pub Med

    Han C, Zhu L Y, Jiang T T, et al. The effect of TBBPA on copepod (Oithona similis) under different salinity and temperature[J]. Periodical of Ocean University of China, 2018(1):7

    Google Scholar Pub Med

    于延珍, 张丽, 曹为, 等. 四溴双酚A(TBBPA)对叉鞭金藻的毒性效应研究[J]. 海洋科学进展, 2016, 34(3):421-429 Yu Y Z, Zhang L, Cao W, et al. Toxic effects of tetrabromobisphenol A (TBBPA) on Dicrateria inornata[J]. Advances in Marine Science, 2016, 34(3):421-429(in Chinese)

    Google Scholar Pub Med

    Jiang S S, Miao J J, Wang X, et al. Inhibition of growth in juvenile Manila clam Ruditapes philippinarum:Potential adverse outcome pathway of TBBPA[J]. Chemosphere, 2019, 224:588-596

    Google Scholar Pub Med

    Anselmo H M, Koerting L, Devito S, et al. Early life developmental effects of marine persistent organic pollutants on the sea urchin Psammechinus miliaris[J]. Ecotoxicology and Environmental Safety, 2011, 74(8):2182-2192

    Google Scholar Pub Med

    Godfrey A, Abdel-Moneim A, Sepúlveda M S. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos[J]. Chemosphere, 2017, 181:710-712

    Google Scholar Pub Med

    刘红玲, 刘晓华, 王晓祎, 等. 双酚A和四溴双酚A对大型溞和斑马鱼的毒性[J]. 环境科学, 2007, 28(8):1784-1787 Liu H L, Liu X H, Wang X Y, et al. Toxicity of BPA and TBBPA to Daphnia magna and zebrafish Brachydanio rerio[J]. Environmental Science, 2007, 28(8):1784-1787(in Chinese)

    Google Scholar Pub Med

    Baumann L, Ros A, Rehberger K, et al. Thyroid disruption in zebrafish (Danio rerio) larvae:Different molecular response patterns lead to impaired eye development and visual functions[J]. Aquatic Toxicology, 2016, 172:44-55

    Google Scholar Pub Med

    Fraser T W K, Khezri A, Jusdado J G H, et al. Toxicant induced behavioural aberrations in larval zebrafish are dependent on minor methodological alterations[J]. Toxicology Letters, 2017, 276:62-68

    Google Scholar Pub Med

    Strack S, Detzel T, Wahl M, et al. Cytotoxicity of TBBPA and effects on proliferation, cell cycle and MAPK pathways in mammalian cells[J]. Chemosphere, 2007, 67(9):S405-S411

    Google Scholar Pub Med

    Tada Y, Fujitani T, Yano N, et al. Effects of tetrabromobisphenol A, brominated flame retardant, in ICR mice after prenatal and postnatal exposure[J]. Food and Chemical Toxicology, 2006, 44(8):1408-1413

    Google Scholar Pub Med

    Szymańska J A, Sapota A, Frydrych B. The disposition and metabolism of tetrabromobisphenol-A after a single i.p. dose in the rat[J]. Chemosphere, 2001, 45(4-5):693-700

    Google Scholar Pub Med

    Fukuda N, Ito Y, Yamaguchi M, et al. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats[J]. Toxicology Letters, 2004, 150(2):145-155

    Google Scholar Pub Med

    Choi J S, Lee Y J, Kim T H, et al. Molecular mechanism of tetrabromobisphenol A (TBBPA)-induced target organ toxicity in Sprague-Dawley male rats[J]. Toxicological Research, 2011, 27(2):61-70

    Google Scholar Pub Med

    Nakagawa Y, Suzuki T, Ishii H, et al. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes[J]. Xenobiotica, 2007, 37(7):693-708

    Google Scholar Pub Med

    龙金烈, 黄长江. TBBPA气相暴露对肺毒性的研究[J]. 浙江农业科学, 2015, 56(7):1087-1090

    Google Scholar Pub Med

    陈玛丽. 四溴双酚-A对鱼类的毒性效应[D]. 上海:华东师范大学, 2008:28-32 Chen M L. Toxic effects of tetrabromobisphenol A (TBBPA) on fish[D]. Shanghai:East China Normal University, 2008:28 -32(in Chinese)

    Google Scholar Pub Med

    杨苏文, 徐范范, 赵明东. 四溴双酚A在鲫鱼不同器官中的分布、富集及病理研究[J]. 中国环境科学, 2013, 33(4):741-747 Yang S W, Xu F F, Zhao M D. Distribution and bioaccumulation of tetrabromobisphenol A in Carassius auratus tissues and its pathological effect[J]. China Environmental Science, 2013, 33(4):741-747(in Chinese)

    Google Scholar Pub Med

    Feng M B, Li Y, Qu R J, et al. Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture[J]. Ecotoxicology, 2013, 22(7):1101-1110

    Google Scholar Pub Med

    He Q, Wang X H, Sun P, et al. Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions[J]. Aquatic Toxicology, 2015, 164:145-154

    Google Scholar Pub Med

    王素敏, 王海燕, 韩大雄. 三种持久性有机污染物对罗非鱼肝脏抗氧化系统的体外影响[J]. 海洋环境科学, 2013, 32(2):216-220 Wang S M, Wang H Y, Han D X. In vitro effects of three persistent organic pollutants on antioxidant defense system in Mossambica tilapia liver[J]. Marine Environmental Science, 2013, 32(2):216-220(in Chinese)

    Google Scholar Pub Med

    Ronisz D, Finne E F, Karlsson H, et al. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout[J]. Aquatic Toxicology, 2004, 69(3):229-245

    Google Scholar Pub Med

    Fini J B, Mével S L, Palmier K, et al. Thyroid hormone signaling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption[J]. Endocrinology, 2012, 153(10):5068-5081

    Google Scholar Pub Med

    van der Ven L T M, van de Kuil T, Verhoef A, et al. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study[J]. Toxicology, 2008, 245(1-2):76-89

    Google Scholar Pub Med

    瞿璟琰, 姚晨岚, 施华宏, 等. 四溴双酚-A和五溴酚对红鲫甲状腺组织结构的影响[J]. 环境化学, 2007, 26(5):588-592 Qu J Y, Yao C L, Shi H H, et al. Effects of tetrabromobisphenol A and pentabromophenol on thyroid gland histology of Carassius auratus[J]. Environmental Chemistry, 2007, 26(5):588-592(in Chinese)

    Google Scholar Pub Med

    Kuiper R V,Cantón R F, Leonards P E, et al. Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD)[J]. Ecotoxicology and Environmental Safety, 2007, 67(3):349-360

    Google Scholar Pub Med

    Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis[J]. Life Sciences, 2005, 76(14):1589-1601

    Google Scholar Pub Med

    Zhang Y F, Xu W, Lou Q Q, et al. Tetrabromobisphenol A disrupts vertebrate development via thyroid hormone signaling pathway in a developmental stage-dependent manner[J]. Environmental Science & Technology, 2014, 48(14):8227-8234

    Google Scholar Pub Med

    Chan W K, Chan K M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA[J]. Aquatic Toxicology, 2012, 108:106-111

    Google Scholar Pub Med

    Goto Y, Kitamura S, Kashiwagi K, et al. Suppression of amphibian metamorphosis by bisphenol A and related chemical substances[J]. Journal of Health Science, 2006, 52(2):160-168

    Google Scholar Pub Med

    Zhang H J, Liu W L, Chen B, et al. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata[J]. Environmental Pollution, 2018, 243(Pt A):394-403

    Google Scholar Pub Med

    Liu H L, Ma Z Y, Zhang T, et al. Pharmacokinetics and effects of tetrabromobisphenol A (TBBPA) to early life stages of zebrafish (Danio rerio)[J]. Chemosphere, 2018, 190:243-252

    Google Scholar Pub Med

    张圣新, 刘济宁, 王蕾, 等. 四溴双酚A和2,4,6-三溴苯酚对黄颡鱼的内分泌干扰毒性效应[J]. 生态与农村环境学报, 2016, 32(6):1012-1017 Zhang S X, Liu J N, Wang L, et al. Endocrine disrupting effects of TBBPA and TBP on Pelteobagrus fulvidraco[J]. Journal of Ecology and Rural Environment, 2016, 32(6):1012-1017(in Chinese)

    Google Scholar Pub Med

    Zatecka E, Ded L, Elzeinova F, et al. Effect of tetrabrombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice[J]. Reproductive Toxicology, 2013, 35:32-39

    Google Scholar Pub Med

    Ogunbayo O A, Lai P F, Connolly T J, et al. Tetrabromobisphenol A (TBBPA), induces cell death in TM4 Sertoli cells by modulating Ca2+ transport proteins and causing dysregulation of Ca2+ homeostasis[J]. Toxicology in Vitro, 2008, 22(4):943-952

    Google Scholar Pub Med

    van der Ven L T, van de Kuil T, Verhoef A, et al. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a subacute toxicity study[J]. Toxicology, 2008, 245(1-2):76-89

    Google Scholar Pub Med

    Kuiper R V, van den Brandhof E J, Leonards P E, et al. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test[J]. Archives of Toxicology, 2007, 81(1):1-9

    Google Scholar Pub Med

    Linhartova P, Gazo I, Shaliutina-Kolesova A, et al. Effects of tetrabrombisphenol A on DNA integrity, oxidative stress, and sterlet (Acipenser ruthenus) spermatozoa quality variables[J]. Environmental Toxicology, 2015, 30(7):735-745

    Google Scholar Pub Med

    Lilienthal H, Verwer C M, van der Ven L T, et al. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats:Neurobehavioral effects in offspring from a one-generation reproduction study[J]. Toxicology, 2008, 246(1):45-54

    Google Scholar Pub Med

    Szychowski K A, Wójtowicz A K. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro[J]. Pharmacological Reports, 2016, 68(1):20-26

    Google Scholar Pub Med

    Chen J F, Tanguay R L, Xiao Y Y, et al. TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish[J]. Environmental Pollution, 2016, 216:53-63

    Google Scholar Pub Med

    白承连, 郑易, 李星驰, 等. 四溴双酚A对斑马鱼胚胎发育毒性和神经毒性研究[J]. 中国药事, 2013, 27(3):292-297 Bai C L, Zheng Y, Li X C, et al. Developmental and neurobehavioral toxicity of TBBPA in zebrafish embryos[J]. Chinese Pharmaceutical Affairs, 2013, 27(3):292-297(in Chinese)

    Google Scholar Pub Med

    Nakajima A, Saigusa D, Tetsu N, et al. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice[J]. Toxicology Letters, 2009, 189(1):78-83

    Google Scholar Pub Med

    Mariussen E, de Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles[J]. Neurochemistry International, 2003, 43(4-5):533-542

    Google Scholar Pub Med

    Zhou Z Y, Zhou B, Chen H M, et al. Reactive oxygen species (ROS) and the calcium-(Ca2+) mediated extrinsic and intrinsic pathways underlying BDE-47-induced apoptosis in rainbow trout (Oncorhynchus mykiss) gonadal cells[J]. The Science of the Total Environment, 2019, 656:778-788

    Google Scholar Pub Med

    Ogunbayo O A, Michelangeli F. The widely utilized brominated flame retardant tetrabromobisphenol A (TBBPA) is a potent inhibitor of the SERCA Ca2+ pump[J]. The Biochemical Journal, 2007, 408(3):407-415

    Google Scholar Pub Med

    Zieminska E, Stafiej A, Toczylowska B, et al. Role of ryanodine and NMDA receptors in tetrabromobisphenol A-induced calcium imbalance and cytotoxicity in primary cultures of rat cerebellar granule cells[J]. Neurotoxicity Research, 2015, 28(3):195-208

    Google Scholar Pub Med

    Hussain S. Process for decarbromodiphenyl alkane predominant product:U.S. Patent 5302768. 1994-4-12.

    Google Scholar Pub Med

    Watanabe I, Sakai S. Environmental release and behavior of brominated flame retardants[J]. Environment International, 2003, 29(6):665-682

    Google Scholar Pub Med

    Kierkegaard A, Bjorklund J. The presence of a'new' flame retardant, decabromodiphenyl ethane, in environmental samples[J]. Organohalogen Compounds, 2003, 61:183-186

    Google Scholar Pub Med

    Zhao Y F, Ma J, Qiu X H, et al. Gridded field observations of polybrominated diphenyl ethers and decabromodiphenyl ethane in the atmosphere of North China[J]. Environmental Science & Technology, 2013, 47(15):8123-8129

    Google Scholar Pub Med

    Venier M, Audy O, Vojta Š, et al. Brominated flame retardants in the indoor environment -Comparative study of indoor contamination from three countries[J]. Environment International, 2016, 94:150-160

    Google Scholar Pub Med

    Ali N, Harrad S, Goosey E, et al. "Novel" brominated flame retardants in Belgian and UK indoor dust:Implications for human exposure[J]. Chemosphere, 2011, 83(10):1360-1365

    Google Scholar Pub Med

    Stuart H, Ibarra C, Abdallah M A, et al. Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices:Causes of variability and implications for human exposure[J]. Environment International, 2008, 34(8):1170-1175

    Google Scholar Pub Med

    Chen S J, Ding N, Zhu Z C, et al. Sources of halogenated brominated retardants in house dust in an industrial city in southern China and associated human exposure[J]. Environmental Research, 2014, 135:190-195

    Google Scholar Pub Med

    曾艳红, 罗孝俊, 孙毓鑫, 等. 东江下游入河排污水卤系阻燃剂质量浓度及排放通量[J]. 环境科学, 2011, 32(10):2891-2895 Zeng Y H, Luo X J, Sun Y X, et al. Concentration and emission fluxes of halogenated flame retardants in sewage from sewage outlet in Dongjiang River[J]. Environmental Science, 2011, 32(10):2891-2895(in Chinese)

    Google Scholar Pub Med

    李光耀. 黄河流域水体与表层沉积物中有机卤素化合物水平及分布规律的研究[D]. 北京:中央民族大学, 2015:20-24

    Google Scholar Pub Med

    Ricklund N, Kierkegaard A, McLachlan M S. An international survey of decabromodiphenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge samples[J]. Chemosphere, 2008, 73(11):1799-1804

    Google Scholar Pub Med

    金美青, 陈紫涵, 陈雯, 等. 十溴二苯乙烷在环境中的分布及毒理学研究进展[J]. 环境化学, 2016, 35(12):2482-2490 Jin M Q, Chen Z H, Chen W, et al. Environmental behavior and toxicology of decabromodiphenyl ethane——A review[J]. Environmental Chemistry, 2016, 35(12):2482-2490(in Chinese)

    Google Scholar Pub Med

    Zhen X M, Tang J H, Xie Z Y, et al. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China[J]. Environmental Pollution, 2016, 213:386-394

    Google Scholar Pub Med

    Ricklund N, Kierkegaard A, McLachlan M S. Levels and potential sources of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (DecaBDE) in lake and marine sediments in Sweden[J]. Environmental Science & Technology, 2010, 44(6):1987-1991

    Google Scholar Pub Med

    Lin Y, Ma J, Qiu X H, et al. Levels, spatial distribution, and exposure risks of decabromodiphenylethane in soils of North China[J]. Environmental Science and Pollution Research International, 2015, 22(17):13319-13327

    Google Scholar Pub Med

    Zheng G, Wan Y, Shi S, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of Lake Taihu:Relationship with organism metabolism across trophic levels[J]. Environmental Science & Technology, 2018, 52(8):4632-4640

    Google Scholar Pub Med

    Sun Y X, Luo X J, Mo L, et al. Brominated flame retardants in three terrestrial passerine birds from South China:Geographical pattern and implication for potential sources[J]. Environmental Pollution, 2012, 162:381-388

    Google Scholar Pub Med

    Sun R X, Luo X J, Tan X X, et al. Legacy and emerging halogenated organic pollutants in marine organisms from the Pearl River Estuary, South China[J]. Chemosphere, 2015, 139:565-571

    Google Scholar Pub Med

    Hong B, Wu T, Zhao G C, et al. Occurrence of decabromodiphenyl ethane in captive Chinese alligators (Alligator sinensis) from China[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(1):12-16

    Google Scholar Pub Med

    Vorkamp K, Bossi R, Riget F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environmental Pollution, 2015, 196:284-291

    Google Scholar Pub Med

    He M J, Luo X J, Chen M Y, et al. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China[J]. The Science of the Total Environment, 2012, 419:109-115

    Google Scholar Pub Med

    Ali N, Malik R N, Mehdi T, et al. Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs:Biosentinels of indoor pollution[J]. The Science of the Total Environment, 2013, 449:29-36

    Google Scholar Pub Med

    Yu L H, Luo X J, Liu H Y, et al. Organohalogen contamination in passerine birds from three metropolises in China:Geographical variation and its implication for anthropogenic effects on urban environments[J]. Environmental Pollution, 2014, 188:118-123

    Google Scholar Pub Med

    Fernandes A R, Mortimer D, Rose M, et al. Bromine content and brominated flame retardants in food and animal feed from the UK[J]. Chemosphere, 2016, 150:472-478

    Google Scholar Pub Med

    Zheng J, Luo X J, Yuan J G, et al. Levels and sources of brominated flame retardants in human hair from urban, e-waste, and rural areas in South China[J]. Environmental Pollution, 2011, 159(12):3706-3713

    Google Scholar Pub Med

    Strid A, Smedje G, Athanassiadis I, et al. Brominated flame retardant exposure of aircraft personnel[J]. Chemosphere, 2014, 116:83-90

    Google Scholar Pub Med

    Sahlström L M, Sellström U, de Wit C A, et al. Estimated intakes of brominated flame retardants via diet and dust compared to internal concentrations in a Swedish mother-toddler cohort[J]. International Journal of Hygiene and Environmental Health, 2015, 218(4):422-432

    Google Scholar Pub Med

    Qiu X H, Zhu T, Hu J X. Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China[J]. Chemosphere, 2010, 80(10):1207-1212

    Google Scholar Pub Med

    Shi T, Chen S J, Luo X J, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from Southern China[J]. Chemosphere, 2009, 74(7):910-916

    Google Scholar Pub Med

    Egebäck A L, Sellström U, McLachlan M S. Decabromodiphenyl ethane and decabromodiphenyl ether in Swedish background air[J]. Chemosphere, 2012, 86(3):264-269

    Google Scholar Pub Med

    Zhu B Q, Lam J C W, Lam P K S. Halogenated flame retardants (HFRs) in surface sediment from the Pearl River Delta region and Mirs Bay, South China[J]. Marine Pollution Bulletin, 2018, 129(2):899-904

    Google Scholar Pub Med

    甄小妹. 环渤海区域表层沉积物中卤代阻燃剂的分布特征及来源研究[D]. 北京:中国科学院大学, 2016:23-28 Zhen X M. The distribution and the source of the halogenated flame retardant in the surface sediments from Yellow Sea and Bohai Sea, North China[D].Beijing:University of Chinese Academy of Sciences, 2016:23 -28(in Chinese)

    Google Scholar Pub Med

    Zhu B Q, Lam J C W, Yang S Y, et al. Conventional and emerging halogenated flame retardants (HFRs) in sediment of Yangtze River Delta (YRD) region, East China[J]. Chemosphere, 2013, 93(3):555-560

    Google Scholar Pub Med

    Chen S J, Feng A H, He M J, et al. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, Southern China:Comparison with historical data[J]. The Science of the Total Environment, 2013, 444:205-211

    Google Scholar Pub Med

    Ilyas M, Sudaryanto A, Setiawan I E, et al. Characterization of polychlorinated biphenyls and brominated flame retardants in surface soils from Surabaya, Indonesia[J]. Chemosphere, 2011, 83(6):783-791

    Google Scholar Pub Med

    Zhang X L, Luo X J, Chen S J, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China[J]. Environmental Pollution, 2009, 157(6):1917-1923

    Google Scholar Pub Med

    孙毓鑫, 郝青, 徐向荣, 等. 西沙永兴岛海域鱼体中non-PBDE类卤系阻燃剂的分布特征及人体暴露评估[J]. 环境化学, 2013, 32(8):1435-1440 Sun Y X, Hao Q, Xu X R, et al. Distribution and human exposure assessment of non-PBDE halogenated flame retardants in fish species fromYongxing Island, South China Sea[J]. Environmental Chemistry, 2013, 32(8):1435-1440(in Chinese)

    Google Scholar Pub Med

    Ezechiáš M, Covino S, Cajthaml T. Ecotoxicity and biodegradability of new brominated flame retardants:A review[J]. Ecotoxicology and Environmental Safety, 2014, 110:153-167

    Google Scholar Pub Med

    郑雯, 林治卿, 房彦军, 等. 十溴二苯乙烷对雄性大鼠青春期发育的干扰效应[J]. 解放军预防医学杂志, 2013, 31(1):42-43

    Google Scholar Pub Med

    Harju M, Heimstad E S, Herzke D, et al. Current state of knowledge and monitoring requirements:Emerging "new" brominated flame retardants in flame retarded products and the environment[J]. Norwegian Pollution Control Authority, 2008, 113:2462

    Google Scholar Pub Med

    Liu Y Q, Pang X Y, Song J R, et al. Exploring the membrane toxicity of decabromodiphenyl ethane (DBDPE):Based on cell membranes and lipid membranes model[J]. Chemosphere, 2019, 216:524-532

    Google Scholar Pub Med

    Nakari T, Huhtala S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant[J]. Environmental Toxicology, 2010, 25(4):333-338

    Google Scholar Pub Med

    Jin S, Huang Y, Li M, et al. Cytotoxicity of bisphenol A and tetrabromobisphenol A on HepG2 cells[J]. Conference on Environmental Pollution and Public Health, 2010:259-262

    Google Scholar Pub Med

    Modesto K A, Martinez C B. Effects of Roundup Transorb on fish:Hematology, antioxidant defenses and acetylcholinesterase activity[J]. Chemosphere, 2010, 81(6):781-787

    Google Scholar Pub Med

    Gan L, Xiong Y Y, Dong F, et al. Profiling kidney microRNAs from juvenile grass carp (Ctenopharyngodon idella) after 56 days of oral exposure to decabromodiphenyl ethane[J]. Journal of Environmental Sciences, 2016, 44:69-75

    Google Scholar Pub Med

    Wang Y W, Chen T, Sun Y M, et al. A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats[J]. Ecotoxicology and Environmental Safety, 2019, 174:224-235

    Google Scholar Pub Med

    Sun R B, Xi Z G, Yan J, et al. Cytotoxicity and apoptosis induction in human HepG2 hepatoma cells by decabromodiphenyl ethane[J]. Biomedical and Environmental Sciences, 2012, 25(5):495-501

    Google Scholar Pub Med

    Wang F X, Wang J, Dai J Y, et al. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study[J]. Environmental Science & Technology, 2010, 44(14):5655-5660

    Google Scholar Pub Med

    韩倩, 张丽娟, 胡国成, 等. 十溴二苯乙烷对草鱼幼鱼肝脏和肌肉组织氧化应激效应的影响[J]. 生态毒理学报, 2016, 11(2):680-686 Han Q, Zhang L J, Hu G C, et al. Oxidative stress effects of decabromodiphenylethane on the liver and muscle tissues of juvenile grass carp (Ctenopharyngodon idellus)[J]. Asian Journal of Ecotoxicology, 2016, 11(2):680-686 (in Chinese)

    Google Scholar Pub Med

    Sun R B, Shang S, Zhang W, et al. Endocrine disruption activity of 30-day dietary exposure to decabromodiphenyl ethane in balb/C mouse[J]. Biomedical and Environmental Sciences, 2018, 31(1):12-22

    Google Scholar Pub Med

    Smythe T A, Butt C M, Stapleton H M, et al. Impacts of unregulated novel brominated flame retardants on human liver thyroid deiodination and sulfotransferation[J]. Environmental Science & Technology, 2017, 51(12):7245-7253

    Google Scholar Pub Med

    Viganò L, De Flora S, Gobbi M, et al. Exposing native cyprinid (Barbus plebejus) juveniles to river sediments leads to gonadal alterations, genotoxic effects and thyroid disruption[J]. Aquatic Toxicology, 2015, 169:223-239

    Google Scholar Pub Med

    Wang X C, Ling S Y, Guan K L, et al. Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, in zebrafish larvae[J]. Environmental Science & Technology, 2019, 53(14):8437-8446

    Google Scholar Pub Med

    Sun R B, Shang S, Zhang W, et al. Endocrine disruption activity of 30-day dietary exposure to decabromodiphenyl ethane in Balb/C mouse[J]. Biomedical and Environmental Sciences, 2018, 31(1):12-22

    Google Scholar Pub Med

    Zheng X B, Luo X J, Zheng J, et al. Contaminant sources, gastrointestinal absorption, and tissue distribution of organohalogenated pollutants in chicken from an e-waste site[J]. The Science of the Total Environment, 2015, 505:1003-1010

    Google Scholar Pub Med

    Jin M Q, Zhang D, Zhang Y, et al. Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane[J]. Journal of Zhejiang University Science B, 2018, 19(5):400-408

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3629) PDF downloads(139) Cited by(0)

Access History

A Review of Pollution Status and Toxicological Researches of Typical Brominated Flame Retardants Tetrabromobisphenol A (TBBPA) and Decabromodiphenyl Ethane (DBDPE)

Fund Project:

Abstract: With hexabromocyclododecane (HBCDs) and poly brominated diphenyl ethers (PBDEs) listed as persistent organic pollutants (POPs), tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE) have become two of the most widely produced and used brominated flame retardants (BFRs). The underlying ecological risk of TBBPA and DBDPE have received increasing attentions since these two typical BFRs are being detected at high concentrations in environmental media. This paper summarized the pollution status of TBBPA and DBDPE and their toxicological effects. TBBPA and DBDPE have been detected in multiple environmental media, such as atmosphere, waters, soil, sediment and organisms. In addition, more severe pollution could be found in industrial areas. TBBPA and DBDPE were even found in human body and breast milk. Overall, TBBPA presented developmental toxicity, hepatorenal toxicity, endocrine disruption effect, reproductive toxicity, and neurotoxicity, while DBDPE showed developmental toxicity, hepatorenal toxicity, and endocrine disruption effect. According to the limited reports on DBDPE toxicity, we concluded that DBDPE was of relatively low toxicity. The aim of this review is to help evaluate the environmental risk, analyze the environmental capacity, and governmentally control the production of TBBPA and DBDPE.

Reference (156)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint