-
磷作为能引起水体富营养化的主要元素,针对其高效去除的研究受到各国学者的关注。强化生物除磷(enhanced biological phosphorus removal,EBPR)工艺是目前污水生物除磷的主要方法之一,该工艺利用活性污泥系统中聚磷微生物(polyphosphate accumulating organisms,PAOs)在厌氧、好氧条件下的交替运行,通过排放富磷污泥,从而达到除磷的目的[1]。溶解氧(DO)浓度是影响生物除磷的一个重要因素[2],通常,曝气池中DO浓度控制在2~3 mg·L−1就可以取得良好的污染物去除效果,然而在实际运行过程中,很多工艺尤其是间歇流工艺会在好氧末期,出现溶解氧过高的现象(6~9 mg·L−1),过曝气不仅是一种能量的浪费,也会导致PAOs体内聚β羟基丁酸盐(PHB)不足而造成除磷性能恶化,而且还会对污泥絮体结构和污泥胞外聚合物产生影响[3]。王中玮等[4]研究发现,当DO浓度维持在0.5 mg·L−1时,污泥发生微膨胀,但可以实现污水节能处理,而马娟等[5]对不同溶解氧浓度下的生物除磷性能进行了研究,发现即使在超低DO条件(0.1 mg·L−1)下,EBPR系统也具有生物除磷可行性,这大大节约了污水处理成本。
另一方面,磷是人们日常生活中不可缺少的资源,但在自然界中,磷是从陆地到海洋的单向迁移。在此情况下,将磷从污水中的去除转变为回收利用显得尤为重要[6-8]。在从污水中回收磷的工艺中,发展较早的是20世纪60年代的Phostrip工艺,其实质是生物除磷与化学除磷相结合的工艺。侧流磷回收工艺的主流部分是常规的生物处理工艺(A/O、A2/O、SBR等),侧流部分是一个化学沉淀池,进行侧流回收时将厌氧富磷上清液(或部分好氧吸磷污泥再释磷)引入旁侧的化学沉降池,对其进行化学磷沉淀处理,最终得到含磷量较高的沉淀物,可用作肥料。受溶度积规则的限制,化学除磷在高浓度时效果较好,此时投加的化学药剂量较少,也可缩短沉淀时间[9]。EBPR系统厌氧末期,聚磷菌能充分释磷,磷浓度为原水的数倍,因此,在厌氧末期,提取富磷上清液并引入旁侧进行化学磷回收是一个有利的回收点[10]。将引入侧流部分用于磷回收的厌氧释磷上清液体积与进水体积的比值称为侧流比,由于侧流磷回收实则是对生物除磷系统中磷源的剥夺[11],故确定合适的侧流比对发挥化学磷回收和生物除磷的作用意义重大。郝晓地等[12]的研究报道,当侧流比为30%时,实现了磷资源回收和促进生物除磷效果的双重作用。马娟等[13]的研究也表明,提取1/3侧流比为最佳工况,可实现磷回收和高效生物除磷的有效结合。此外,基于本课题组对侧流磷回收系统长期运行的研究[14]发现,未控制溶解氧条件下,EBPR系统的除磷效率和出水达标率均不理想。因此,如能将溶解氧控制在较低水平并同时进行磷资源回收,可实现环境与经济效益并举。
本研究对EBPR系统实施溶解氧控制,在厌氧末期,提取1/3上清液施行磷回收,探讨了低DO浓度(1.0、0.5、0.1 mg·L−1)对EBPR侧流磷回收工艺主流系统的除磷性能和相应磷回收率的影响,并确定侧流磷回收的最佳DO浓度,为实际工程中低耗侧流磷回收提供参考。
溶解氧对EBPR主流除磷及侧流磷回收性能的影响
Effect of dissolved oxygen on main-stream phosphorus removal and side-stream phosphorus recovery performance of EBPR
-
摘要: 采用交替厌氧/好氧(An/O)模式下运行的SBR,考察不同溶解氧(DO)浓度(1.0、0.5、0.1 mg·L−1)对同步侧流磷回收的强化生物除磷(enhanced biological phosphorus removal,EBPR)主流系统除磷及侧流磷回收性能的影响。结果表明,整个实验阶段主流系统对COD、
${{\rm{NH}}_4^ + }$ -N及TN的去除均能稳定达到《城镇污水处理厂污染物综合排放标准》一级A标准,其中TN因出水${\rm{NO}}_3^ - $ -N浓度的降低而降低,故TN去除率升高。DO为1.0 mg·L−1和0.5 mg·L−1时对磷的去除率分别为99.0%和95.4%,主流系统出水磷达标率分别为96.0%和84.0%。而当DO浓度过低(0.1 mg·L−1)时,硝化与吸磷对有限电子受体的竞争及吸磷时间不足导致反应结束时系统内平均磷残留量达1.02 mg·L-1,除磷率降至87.2%。鉴于侧流磷回收是对主流系统的磷剥夺,会影响污泥的好氧吸磷能力,继而厌氧阶段释磷量因侧流提取降低。与此同时,DO为1.0 mg·L−1时,侧流磷回收率较其余2个工况高,且此工况下主流系统的厌氧释磷及好氧吸磷能力均最高,考虑到主流工艺的可靠运行及出水稳定性,认为DO=1.0 mg·L−1为最优工况。-
关键词:
- 强化生物除磷(EBPR)系统 /
- 低溶解氧 /
- 侧流比 /
- 磷回收性能 /
- 厌氧
Abstract: An alternate anaerobic/aerobic (An/O) sequencing batch reactor (SBR) was employed to investigate the effect of DO concentrations (1.0, 0.5 and 0.1 mg·L−1) on the main-stream phosphorus removal and side-stream phosphorus recovery performance of the synchronous side-stream phosphorus recovery-enhanced biological phosphorus removal (EBPR) mode. The results showed that the COD,${\rm{NH}}_4^ + $ -N and TN in the effluent of mainstream system during the whole experimental period could stably meet level A standard of the national discharge of pollutants for municipal wastewater treatment plants, of which the decrease of TN was ascribed to the decrease of${\rm{NO}}_3^ - $ -N concentration in effluent, so TN removal rate increased. The removal rates of phosphorus were 99.0% and 95.4% at DO concentration of 1.0 mg·L−1 and 0.5 mg·L−1, respectively, and the corresponding rates of phosphorus reaching standard for the mainstream system effluent were 96.0% and 84.0%, respectively. However, at too low DO concentration (0.1 mg·L−1), the competition between nitrification and phosphorus uptake for the limited electron acceptor and the lack of phosphorus uptake time led to a mean phosphorus residue of 1.02 mg·L−1 in the system at the end of the reaction, and the phosphorus removal rate dropped to 87.2%. Since the side-stream phosphorus recovery could deprive of phosphorus from the mainstream system, which could affect the aerobic phosphorus uptake capacity of the sludge, the amount of phosphorus release in the subsequent anaerobic phase was reduced due to side-stream extraction. Moreover, the side-stream phosphorus recovery rate at DO = 1.0 mg·L−1 was higher than that of the other two operation conditions, both the anaerobic phosphorus release and aerobic phosphorus uptake capacity of the main stream system reached the highest under this condition. Considering the reliable operation of the mainstream process and the stability of the effluent, DO=1.0 mg·L−1 was regarded as the optimal operation condition. -
-
[1] ARUN V, MINO T, MATSUO T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems[J]. Water Research, 1988, 22(5): 565-570. doi: 10.1016/0043-1354(88)90056-5 [2] ABBASSI B, DULLSTEIN S, RÄBIGER N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: Experimental and theoretical approach[J]. Water Research, 2000, 34(1): 139-146. doi: 10.1016/S0043-1354(99)00108-6 [3] 王珍宝, 施春红, 黄晓龙, 等. 低溶解氧条件下分段进水对SBR工艺脱氮除磷效果的影响研究[J]. 安全与环境工程, 2018, 25(2): 95-100. [4] 王中玮, 彭永臻, 王淑莹, 等. 不同运行方式下低溶解氧污泥微膨胀的可行性研究[J]. 环境科学, 2011, 32(8): 2347-2352. [5] 马娟, 宋璐, 俞小军, 等. 超低溶解氧条件下的EBPR系统除磷性能[J]. 环境科学, 2016, 37(8): 3128-3134. [6] ARIYANTO E, SEN T K, ANG H M. The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation[J]. Advanced Powder Technology, 2014, 25(2): 682-694. doi: 10.1016/j.apt.2013.10.014 [7] ZHU Z Y, CHEN W L, TAO T, et al. A novel AAO-SBSPR process based on phosphorus mass balance for nutrient removal and phosphorus recovery from municipal wastewater[J]. Water Research, 2018, 144: 763-773. doi: 10.1016/j.watres.2018.08.058 [8] YAN H L, CHEN Q W, LIU J H, et al. Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer[J]. Water Research, 2018, 145: 721-730. doi: 10.1016/j.watres.2018.09.005 [9] 郝晓地, 王崇臣, 金文标. 磷危机概观与磷回收技术[M]. 北京: 高等教育出版社, 2011. [10] 张莹, 李咏梅. 城市污水侧流磷回收工艺的研究进展[J]. 环境科学与技术, 2016, 39(S1): 126-130. [11] 吕景花. 厌氧释磷上清液侧流化学磷回收对主流生物除磷系统的影响研究[D]. 西安: 西安建筑科技大学, 2015. [12] 郝晓地, 戴吉, 胡沅胜, 等. C/P比与磷回收对生物营养物去除系统影响的试验研究[J]. 环境科学, 2008, 29(11): 3098-3103. doi: 10.3321/j.issn:0250-3301.2008.11.018 [13] 马娟, 宋璐, 俞小军, 等. 侧流磷回收对低溶解氧EBPR系统性能的影响[J]. 环境科学, 2017, 38(3): 1130-1136. doi: 10.3969/j.issn.1673-2049.2017.03.008 [14] 俞小军, 李杰, 周猛, 等. 长期侧流提取对EBPR系统除磷及其磷回收性能的影响[J]. 环境科学, 2018, 39(9): 4274-4280. [15] HESSELMANN R P, WERLEN C, HAHN D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic & Applied Microbiology, 1999, 22(3): 454-465. [16] 席粉鹊, 袁林江, 吕景花. 侧流化学除磷对AO连续流生物除磷系统的影响[J]. 环境工程学报, 2014, 8(12): 5231-5236. [17] 袁林江, 刘传波, 罗大成, 等. 同步化学除磷对污水处理系统及A2/O单元的影响研究[J]. 安全与环境学报, 2017, 17(6): 2353-2359. [18] 刘国华, 陈燕, 范强, 等. 溶解氧对活性污泥系统的脱氮效果和硝化细菌群落结构的影响[J]. 环境科学学报, 2016, 36(6): 1971-1978. [19] 彭赵旭, 韩微, 彭志远, 等. 反应时间和碳磷比对单级好氧除磷的影响[J]. 郑州大学学报(工学版), 2018, 39(4): 46-50. [20] 唐玉朝, 伍昌年, 杨慧, 等. 改良氧化沟活性污泥ORP的调控及对磷吸收/释放的影响[J]. 工业水处理, 2012, 32(3): 19-22. doi: 10.3969/j.issn.1005-829X.2012.03.005 [21] WELLES L, TIAN W D, SAAD S, et al. Accumulibacter clades type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83: 354-366. doi: 10.1016/j.watres.2015.06.045 [22] WELLES L, LOPEZ-VAZQUEZ C M, HOOIJMANS C M, et al. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions[J]. AMB Express, 2016, 6(1): 44-55. doi: 10.1186/s13568-016-0214-z [23] ACEVEDO B, OEHMEN A, CARVALHO G, et al. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage[J]. Water Research, 2012, 46(6): 1889-1900. doi: 10.1016/j.watres.2012.01.003 [24] ACEVEDO B, BORRÁS L, OEHMEN A, et al. Modelling the metabolic shift of polyphosphate-accumulating organisms[J]. Water Research, 2014, 65: 235-244. doi: 10.1016/j.watres.2014.07.028 [25] LYU J H, YUAN L J, CHEN X, et al. Phosphorus metabolism and population dynamics in a biological phosphate-removal system with simultaneous anaerobic phosphate stripping[J]. Chemosphere, 2014, 117(1): 715-721.