-
近年来,随着工业化与城市化进程的不断加快,化工、医药、农药、纺织和印染等行业的废水排放量也日益增多。上述废水中有机物的种类复杂,可生化性差,进入城镇污水处理厂后,若仅采用传统的生化处理工艺进行处理,已不能满足越来越严格的市政污水排放标准[1]。探索高效、经济的方法,对城镇污水处理厂出水进行深度处理,以进一步去除其中的难降解污染物,实现出水COD的达标排放,已成为目前研究的热点。
活性炭是一种具有多孔结构的水处理材料,因具有较强的吸附能力,广泛应用于排放标准严格地区的污水处理厂深度处理提标改造中[2]。当活性炭因吸附出水中的难降解COD达到饱和时,若将饱和活性炭直接丢弃,会对环境造成二次污染,并提高活性炭使用的成本[3]。因此,饱和活性炭的再生是活性炭高效应用的关键。
活性炭主要的再生方法有电加热再生、过热蒸汽再生等[4]。其中,过热蒸汽再生是指使用锅炉运行产生130 ℃的蒸汽,再通过线性加热器将该蒸汽加热至500 ℃,并将蒸汽通过活性炭层的布汽器来均匀冲洗活性炭,使其呈流化状态,将活性炭炭床温度加热至400~500 ℃进行再生。过热蒸汽再生的原理是利用过热蒸汽对活性炭吸附的有机物进行热解和气提,将有机物从活性炭中解吸出去[5]。电加热再生需在密闭条件下将活性炭炭床温度先加热至700~800 ℃,然后再通入水蒸气与活性炭发生水煤气反应进行再生。2种方法相比较,过热蒸汽再生具有能耗低、可进行活性炭的原位再生、避免炭转移质量损失等优点[6]。采用过热蒸汽进行原位再生的设备包括水蒸气发生器、水蒸气过热管和吸附-再生一体罐,其中水蒸气可通过电加热锅炉或外接热电厂产生的蒸汽获得。过热蒸汽再生活性炭在国外已有较多的应用[7],近2年也在我国开始应用[8]。
目前,关于活性炭热再生的研究均以吸附饱和的活性炭为研究对象,但在实验过程中发现,未吸附饱和的活性炭若干次再生后,其再生效果要优于吸附饱和的活性炭。因此,本研究以某城镇污水处理厂吸附二级出水的不同吸附饱和度活性炭为研究对象,以过热蒸气加热为再生方式,考察了再生温度、再生时间、多次再生等因素对不同吸附饱和度活性炭再生效率及得率的影响,并探究过热蒸汽再生过程中活性炭吸附动力学及表面结构特征,以期为过热蒸汽再生活性炭的实际工程应用提供参考。
利用过热蒸汽再生不同吸附饱和度的活性炭
Regeneration of different adsorption saturated-activated carbon with superheated steam
-
摘要: 利用活性炭进一步处理城镇污水处理厂二级出水,对于城镇污水达标排放具有重要意义。为提高此工艺中活性炭的再生效率,采用过热蒸汽冲洗的方式,对不同吸附饱和度的活性炭进行再生实验。考察了再生温度、再生时间、多次再生对不同吸附饱和度活性炭再生效率和得率的影响。结果表明:在温度为400 ℃的条件下,再生6 h,对不同吸附饱和度的活性炭均能取得最佳的再生效率和较高的得率;经过3次吸附-再生循环后,吸附饱和度为60%活性炭的再生效率与得率损失最少,对二级出水COD的吸附符合伪二级动力学方程,活性炭表面酸性官能团减少,pHpzc增加;比较再生前后的扫描电镜,再生后的活性炭孔结构更加清晰,炭化与解吸较好。基于上述结果,选取吸附饱和度为60%的活性炭,在再生温度400 ℃、再生时间6 h时,多次再生后,可获得最佳的再生效果和较低的得率损失。Abstract: It is significant to meet the requirement of discharge standards for the municipal sewage when activated carbon is used to further treat secondary effluent from the urban wastewater treatment plant. In order to improve the regeneration efficiency of the used activated carbon, the superheated steam was used to regenerate different adsorption saturated-activated carbon. The effects of regeneration temperature, regeneration time and multiple regeneration on the regeneration efficiency and yield of different adsorption saturated-activated carbon were investigated. The results showed that the best regeneration efficiency and high yield occurred for different adsorption saturated-activated carbon after 6 h regeneration at 400 ℃. After three times of adsorption-regeneration cycles, the losses on the regeneration efficiency and yield of 60% adsorption saturated-activated carbon were the least. The adsorption of COD from secondary effluent conformed to the pseudo second-order kinetic equation. The acid functional groups on the surface of activated carbon decreased and its pHpzc increased. Through comparison of the scanning electron microscope images before and after regeneration, the pore structure of the regenerated activated carbon was clearer, indicating better carbonization and desorption. Therefore, the best regeneration efficiency and lower yield loss can be obtained by multiple regeneration of 60% adsorption saturated-activated carbon after 6 h regeneration at 400 ℃.
-
Key words:
- activated carbon /
- superheated steam /
- regeneration /
- adsorption kinetics
-
表 1 不同吸附饱和度活性炭碘吸附值与亚甲基蓝吸附值
Table 1. Iodine adsorption value and methylene blue adsorption value of activated carbon with different adsorption saturation
吸附饱和度/% 碘吸附值/(mg·g−1) 亚甲基蓝吸附值/(mg·g−1) 0 1 020.0 123.5 20 982.5 122.4 40 917.3 122.4 60 823.4 121.6 80 690.4 120.5 100 630.9 120.2 表 2 不同再生温度下活性炭孔结构参数
Table 2. Pore structure parameters of activated carbon at different regeneration temperatures
再生温度/℃ 比表面积/(m2·g−1) 总孔体积/(cm3·g−1) 平均孔径/nm 250 1 557.7 0.785 5 2.050 5 350 1 699.6 0.806 4 2.023 4 400 1 732.5 0.827 3 2.008 3 450 1 708.8 0.815 2 2.010 3 表 3 不同再生时间下活性炭孔结构参数
Table 3. Pore structure parameters of activated carbon at different regeneration times
再生时间/h 比表面积/(m2·g−1) 总孔体积/(cm3·g−1) 平均孔径/nm 3 1 623.4 0.796 2 2.105 1 6 1 732.5 0.827 3 2.013 4 9 1 695.4 0.813 3 2.045 4 表 4 活性炭多次再生动力学模型参数
Table 4. Kinetic model parameters for activated carbon with multiple regeneration
材料 qe/(mg·g−1) 伪一级动力学方程参数 伪二级动力学方程参数 k1/min−1 qe/(mg·g−1) R2 k2/(g·(mg·min)−1) qe/(mg·g−1) R2 原炭 105.13 0.301 102.34 0.997 0.011 8 104.32 0.998 1次再生 103.36 0.284 101.11 0.997 0.011 3 103.05 0.999 2次再生 101.10 0.266 98.56 0.997 0.010 0 100.67 0.999 3次再生 84.10 0.270 82.53 0.998 0.012 8 84.18 0.999 表 5 活性炭的物理与化学特性
Table 5. Physical and chemical properties of activated carbon
活性炭 比表面积/
(m2·g−1)总孔体积/
(cm3·g−1)平均孔径/
nm羟基/
(mmol·g−1)酚羟基/
(mmol·g−1)酸性基团/
(mmol·g−1)碱性基团/
(mmol·g−1)pHpzc AC 1 934.40 0.973 7 1.949 0 0.75 1.02 1.77 0.75 5.01 ADAC 894.64 0.487 9 2.181 6 0.38 0.65 1.03 0.75 5.02 RAC 1 520.50 0.740 8 2.013 4 0.35 0.52 0.87 0.73 5.10 -
[1] ZHANG A P, GU Z P, CHEN W M, et al. Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by microwave-Fenton process[J]. Environmental Science & Pollution Research, 2018, 25(29): 28907-28916. [2] 郭方峥, 涂勇, 徐军, 等. 太湖流域电镀园区污水处理厂提标改造工程设计[J]. 中国给水排水, 2017, 33(4): 82-85. [3] SINGH P, RAIZADA P, KUMARI S, et al. Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite[J]. Applied Catalysis A: General, 2014, 476(6): 9-18. [4] ZHAN J H, WANG Y J, WANG H J, et al. Electro-peroxone regeneration of phenol-saturated activated carbon fiber: The effects of irreversible adsorption and operational parameters[J]. Carbon, 2016, 109: 321-330. doi: 10.1016/j.carbon.2016.08.034 [5] 郭宏山. 炼油废水活性炭纤维快速脱附技术研究[J]. 当代化工, 2010, 39(5): 560-562. doi: 10.3969/j.issn.1671-0460.2010.05.021 [6] 康志杰. 热氮气再生活性炭-冷凝回收治理有机废气工程应用[J]. 海峡科学, 2017(7): 29-30. doi: 10.3969/j.issn.1673-8683.2017.07.009 [7] PARMELE C S, ALLEN R D, MEHRAN M. Steam-regenerated activated carbon: An emission-free, cost-effective ground water treatment process[J]. Environmental Progress, 1986, 5(2): 135-139. doi: 10.1002/ep.670050216 [8] 高志鹏, 刘成, 陶辉, 等. 生物活性炭的热再生效能及在水厂中的应用[J]. 中国给水排水, 2019, 35(15): 48-53. [9] 张巍, 应维琪, 常启刚, 等. 水处理活性炭吸附性能指标的表征与应用[J]. 中国环境科学, 2007, 27(3): 289-294. doi: 10.3321/j.issn:1000-6923.2007.03.001 [10] 谷麟, 周品, 袁海平, 等. 不同活化剂制备秸秆-污泥复配活性炭的机理及性能[J]. 净水技术, 2013, 32(2): 61-66. doi: 10.3969/j.issn.1009-0177.2013.02.014 [11] 陈薇, 肖高, 郭杰, 等. 煤基活性炭表面改性对稀土负载型CeO2/AC低温脱硝性能的影响[J]. 环境工程学报, 2018, 12(7): 113-121. [12] ZHONG L C, LI W H, ZHANG Y S, et al. Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method[J]. Fuel, 2017, 188: 343-351. doi: 10.1016/j.fuel.2016.10.048 [13] DUAN X H, SRINIVASAKANNAN C, LIANG J S. Process optimization of thermal regeneration of spent coal based activated carbon using steam and application to methylene blue dye adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1618-1627. doi: 10.1016/j.jtice.2013.10.019 [14] 房聪, 房烽, 张黎明, 等. 秸秆活性炭活化过一硫酸盐降解酸性橙7[J]. 环境科学学报, 2018, 38(1): 242-250. [15] LARIN A V, PROKUDINA N A, POLUNINA I A, et al. A variant of determining the microporous structure of activated carbon[J]. Protection of Metals & Physical Chemistry of Surfaces, 2017, 53(4): 628-631. [16] WANG R K, MA Q Q, ZHAO Z, et al. Adsorption of surfactants on coal surfaces in the coking wastewater environment: Kinetics and effects on the slurrying properties of coking wastewater-coal slurry[J]. Industrial & Engineering Chemistry Research, 2019, 58(28): 12825-12834. [17] 郑照强, 夏洪应, 彭金辉, 等. 响应曲面法优化废弃五倍子药渣制取活性炭的研究[J]. 环境污染与防治, 2013, 35(3): 5-9. doi: 10.3969/j.issn.1001-3865.2013.03.002 [18] 谭珍珍, 张学杨, 王昌松, 等. 椰壳炭对水中阿莫西林的吸附特性[J]. 江苏农业科学, 2019, 47(4): 252-256. [19] 师杰, 赵志伟, 崔福义, 等. 化学改性强化活性炭纤维吸附重金属离子[J]. 哈尔滨工业大学学报, 2016, 48(8): 102-107. doi: 10.11918/j.issn.0367-6234.2016.08.017