-
新型烟碱类农药(neonicotinoid insecticides,NNIs)是一种新兴的神经性杀虫剂,由于其杀虫广谱、内吸性好且选择性高,因此,被广泛地应用于农作物、土壤及家庭等领域害虫的治理中[1]。正因其应用广泛,在蔬果[2]、饮用水[3]、牛奶[4]、地表水[5]中,NNIs均被检出。新型烟碱类化合物水溶性较高[2],生产及应用过程中产生的废水毒性大,具有生物累积性[6],并且存在生态风险[7]与健康风险[8],所以需要研究出一种有效去除水中此类物质的方法。
目前,含NNIs废水的处理方法主要有光降解[9]、反应活性氧化降解[10]等高级氧化法。然而由于NNIs的代谢产物毒性较大[11],高级氧化法耗时长、花费高,还需要利用复杂的设备。吸附法被认为是一种较有竞争力的除污方法[12]。已有学者研究了碳冷凝胶[13]、活性炭等[14]、纤维素[12]和金属有机骨架[15]等对新型烟碱类农药的吸附行为,但大部分研究集中于某一化合物的单一吸附,对于相关机制的探究较少,且吸附材料选择的范围有待扩大。因此,选择一种易合成、可回收利用的新型材料吸附处理NNIs废水具有实际意义。
金属有机骨架(metal-organic frameworks, MOFs)是一种多孔无机-有机杂化成分的材料。这种无机和有机相结合的结构,结构多样且材料内孔尺寸高度可调节,比传统多孔材料沸石具有更高的孔隙率和更复杂的孔道结构[16]。MOFs比表面积较大,拥有大量的不饱和金属位点,加上具有化学稳定性优越及孔道可调控等特征,这种材料非常适用于吸附去除水中的有机污染物[17]。有研究[18]利用MOF-5去除废水中苯酚,30 min内达到吸附平衡,去除率达到97%以上,且材料可多次重复使用;龚文朋等[19]使用MOF-508对水中染料进行去除,在2 min内达到100%的去除率;BHADRA等[20]研究指出bio-MOF-1可快速去除药物及个人护理产品,且去除效果优于其他吸附剂;QIN等[21]将MIL-101用于水中双酚A的去除,同样取得优异的效果,吸附可在60 min达到平衡,材料重复利用性好。因此,MOF具有吸附容量大、吸附速度快、重复利用率高等优点,广泛应用于水中污染物的去除。然而关于MOF吸附去除NNIs的研究还不多见。
使用不同的金属位点和配体构建MOFs,可以灵活改变其物理化学性质[22-23],因此,许多学者将其进行改性从而加强材料的吸附降解性能。ZHANG等[24]对铁基MOF进行氨基化处理促进了偶氮染料的降解;LI等[25]将TiO2包裹在用水杨醛改性氨基化MOF,增加了材料的光吸收性,显著提高了MB的降解;李超等[26]将MIL-101氨基化后,MIL-101对CO2的吸附率显著提高;龚文朋等[19]通过H6P2Mo15W3O62对 MOF-508进行改性,提高了其对水中亚甲基蓝的吸附。
MLI-101是MOFs的一类分支,其中氨基改性的MIL-101相较于MIL-101具有更丰富的官能团,材料氨基化可改变材料的吸附性能,还使其在光催化、碱催化等领域的应用具有潜在价值[27]。因此,使用氨基改性MIL-101去除水中NNIs具有现实意义。本研究以水热法制备NH2-MIL-101,对其微观结构进行表征分析,通过吸附实验对比NH2-MIL-101与MIL-101对不同结构NNIs的去除效果,并探讨溶液pH、共存阴离子对去除率的影响,从而分析影响去除效果的因素,探究材料氨基化的优势及相应去除机制,结合材料吸附动力学、热力学及重复利用率研究结果,分析评价NH2-MIL-101作为吸附剂去除水中NNIs的可行性,为解决含NNIs的废水处理问题提供参考。
氨基化金属有机骨架对废水中新型烟碱类农药的去除机制
Removal mechanism of neonicotinoid insecticides in wastewater by aminated metal-organic framework
-
摘要: 为有效去除水中多种新型烟碱类农药(neonicotinoid insecticides, NNIs),通过水热法合成了氨基化金属有机骨架纳米材料(NH2-MIL-101),结合材料的理化性质表征结果及其对NNIs的吸附性能,探究NH2-MIL-101对水中NNIs的去除机制。结果表明:NH2-MIL-101对6-氯烟酸、啶虫脒、噻虫胺、吡虫啉、噻虫嗪的去除率优于MIL-101,最高可达86%、92%、30%、63%、47%,且20 min内可达到吸附平衡;π-π作用和分子空间位阻的不同导致NH2-MIL-101对不同NNIs的去除存在差异;对于不同NNIs的去除,溶液最佳pH存在差异,综合而言,在pH为3~7时去除效果较好;水中共存阴离子Cl− (0~1 000 mg·L−1)与
${\rm{SO}}_4^{2 - }$ (0~100 mg·L−1)对5种NNIs的去除效果影响不大,${\rm{HCO}}_3^ - $ (0~100 mg·L−1)对NNIs的去除呈现明显的抑制作用。综合上述结果,NH2-MIL-101对NNIs的吸附符合Langmuir模型和准二级动力学模型,具有良好的吸附效果,且能够重复利用5次,在NNIs的水处理中具有应用价值。Abstract: To effectively remove neonicotinoid insecticides (NNIs) in water, aminated metal organic frameworks (NH2-MIL-101) was synthesized by hydrothermal method in this study. Based on the physicochemical properties of the synthesized materials and their sorption performance for NNIs, the removal mechanism of NNIs in water by NH2-MIL-101 was explored. The results showed that the removal rates of 6-chlorniacin, acetaminidine, thiamethylamine, imidacloprid and thiamethoxam NNIs by NH2-MIL-101 were higher than those by MIL-101. The highest removal rates were 86%, 92%, 30%, 63% and 47% for 6-chlorniacin, acetaminidine, thiamethylamine, imidacloprid and thiamethoxam, respectively, and the adsorption equilibrium could be achieved within 20 min. The differences of π-π interaction and molecular steric hindrance resulted in the different removal rates of various NNIs by NH2-MIL-101. In general, good removal effect occurred at pHs 3~7, though the optimal pH was different for specific NNI. The coexisting anions of Cl− (0~1 000 mg·L−1) and${\rm{SO}}_4^{2 - }$ (0~100 mg·L−1) had slight effect on the removal of 5 kinds of NNIs, while${\rm{HCO}}_3^ - $ (0~100 mg·L−1) had a significant inhibitory effect on the removal of these NNIs. In conclusion, Langmuir model and the quasi-second-order kinetic model had a good fitting for the sorption process of NNIs by NH2-MIL-101 with good adsorption effects, and the material could be reused for 5 times. Therefore, NH2-MIL-101 can be a promising material for application in NNIs-containing water treatment. -
表 1 5种新型烟碱类化合物质谱参数及保留时间
Table 1. Mass spectrometry parameters and retention time of 5 neonicotinoids
NNIs 母离子m/z 子离子m/z 碰撞能量/eV 保留时间/min 最小值 中值 最大值 子离子
最小值子离子
中值子离子
最大值6-氯烟酸 158.1 51.47 78.638 122.1271) 38 26 16 4.35 吡虫啉 255.9 132.81 174.9 209.171) 28 15 21 4.43 啶虫脒 223 90.18 99.18 126.081) 37 36 23 4.50 噻虫嗪 291.9 131.971) 181.22 211.07 15 15 5 4.13 噻虫胺 249.9 113.09 132.01 168.841) 20 7 58 4.34 注:1)为定量离子。 表 2 NNIs的化学性质
Table 2. Chemical properties of NNIs
NNIs 化学式 相对分子质量 pKa lgKow ChloA C6H4ClNO2 156.57 3.5 1.33 Ace C10H11ClN4 222.68 0.7 0.8 Clo C6H8ClN5O2S 249.7 11.09 0.91 Imi C9H10ClN5O2 255.66 1.56 0.57 Thim C8H10ClN5O3S 291.71 0.41 −0.13 表 3 NH2-MIL-101对NNIs的吸附动力学拟合参数
Table 3. Kinetic fitting parameters for NNIs sorption by NH2-MIL-101
NNIs 准一级动力学方程 准二级动力学方程 qe /(mg·g−1) k1 /min−1 R2 qe /(mg·g−1) k1 /(g·(mg·min)−1) R2 ChloA 2.23 0.88 0.995 69 2.32 1.33 0.999 78 Ace 2.39 1.02 0.998 83 2.43 0.29 0.999 7 Clo 0.83 0.63 0.972 1 0.92 1 0.992 18 Imi 1.76 0.47 0.973 52 1.89 0.6 0.998 63 Thim 1.08 0.62 0.934 62 1.21 0.65 0.993 53 表 4 NH2-MIL-101对NNIs的吸附等温线拟合参数
Table 4. Isotherms fitting parameters of NNIs sorption by NH2-MIL-101
NNIs qm/(mg·g−1) K/(L·mg−1) R2 RL ChloA 3.77 8.422 0.985 6 0.023 Ace 4.04 8.243 0.993 9 0.024 Clo 1.04 1.048 0.994 4 0.160 Imi 2.35 5.932 0.993 7 0.033 Thim 1.79 5.213 0.997 1 0.037 -
[1] JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the status and global strategy for neonicotinoids[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2897-2908. doi: 10.1021/jf101303g [2] 谭颖, 张琪, 赵成, 等. 蔬菜水果中的新型烟碱类农药残留量与人群摄食暴露健康风险评价[J]. 生态毒理学报, 2016, 11(6): 67-81. [3] SULTANA T, MURRAY C, KLEYWEGT S, et al. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada[J]. Chemosphere, 2018, 202: 506-523. doi: 10.1016/j.chemosphere.2018.02.108 [4] SECCIA S, FIDENTE P, MONTESANO D, et al. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection[J]. Journal of Chromatography A, 2008, 1214: 115-120. doi: 10.1016/j.chroma.2008.10.088 [5] WAN Y J, WANG Y, XIA W, et al. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential[J]. Science of the Total Environment, 2019, 675: 513-519. doi: 10.1016/j.scitotenv.2019.04.267 [6] KARMAKAR R, KULSHRESTHA G. Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop[J]. Pest Management Science, 2009, 65(8): 931-937. doi: 10.1002/ps.1776 [7] KÜLTIĞIN Ç, EMINE Y, ZAFER T, et al. Physiological, anatomical, biochemical, and cytogenetic effects of thiamethoxam treatment on Allium cepa (amaryllidaceae) L[J]. Environmental Toxicology, 2012, 27(11): 635-643. doi: 10.1002/tox.20680 [8] DONG Y M, WANG G L, JIANG P P, et al. Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water[J]. Chinese Chemical Letters, 2011, 22(2): 209-212. doi: 10.1016/j.cclet.2010.10.010 [9] 刘保东. 噻虫胺的水解和光化学降解研究[D]. 新乡: 河南师范大学, 2013 [10] YANG H, LIU H, HU Z, et al. Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process[J]. Chemical Engineering Journal, 2014, 245: 24-33. doi: 10.1016/j.cej.2014.02.016 [11] SUCHAIL S, DEBRAUWER L, BELZUNCES L P, et al. Metabolism of imidacloprid in apis mellifera[J]. Pest Management Science, 2004, 60(3): 291-296. doi: 10.1002/ps.772 [12] YUAN M, LIU X, LI C, et al. A higher efficiency removal of neonicotinoid insecticides by modified cellulose-based complex particle[J]. International Journal of Biological Macromolecules, 2018, 126: 857-866. [13] MOMČILOVIĆ M Z, RANĐELOVIĆ M S, PURENOVIĆ M, et al. Synthesis and characterization of resorcinol formaldehyde carbon cryogel as efficient sorbent for imidacloprid removal[J]. Desalination and Water Treatment, 2014, 52(37/38/39): 7306-7316. [14] MOHAMMADA S G, AHMED S M. Adsorptive removal of acetamiprid pesticide from aqueous solution using environmentally friendly natural and agricultural wastes[J]. Desalination and Water Treatment, 2019, 145: 280-290. doi: 10.5004/dwt.2019.23644 [15] LIU G, LI L, XU D, et al. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal[J]. Carbohydrate Polymers, 2017, 175: 584-591. doi: 10.1016/j.carbpol.2017.06.074 [16] SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401-425. doi: 10.1016/j.trac.2019.06.007 [17] FURUKAWA S, REBOUL J, STÉPHANE D, et al. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale[J]. Chemical Society Reviews, 2014, 43(16): 5730-5734. [18] XIE K, SHAN C, QI J, et al. Study of adsorptive removal of phenol by MOF-5[J]. Desalination and Water Treatment, 2014, 54(3): 654-659. [19] 龚文朋, 陈竹青, 马海芹, 等. H6P2Mo15W3O62改性MOF-508金属有机框架对水中亚甲基蓝的吸附[J]. 湖北大学学报(自然科学版), 2017, 39(1): 1-7. [20] BHADRA B N, JHUNG S H. Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon[J]. Microporous and Mesoporous Materials, 2018, 270: 102-108. doi: 10.1016/j.micromeso.2018.05.005 [21] QIN F X, JIA S Y, LIU Y, et al. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks[J]. Desalination and Water Treatment, 2015, 54(1): 93-102. doi: 10.1080/19443994.2014.883331 [22] HU C, XIAO J D, MAO X D, et al. Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive[J]. Materials Letters, 2019, 240: 113-116. doi: 10.1016/j.matlet.2018.12.123 [23] YANG H, BRIGHT J, KASANI S, et al. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting[J]. Nano Research, 2019, 12: 1-8. doi: 10.1007/s12274-018-2206-6 [24] ZHANG M W, LIN K Y A, HUANG C F, et al. Enhanced degradation of toxic azo dye, amaranth, in water using oxone catalyzed by MIL-101-NH2 under visible light irradiation[J]. Separation and Purification Technology, 2019, 227: 1-9. [25] LI X, PI Y, XIA Q, et al. TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB[J]. Applied Catalysis B: Environmenta, 2016, 191: 192-201. doi: 10.1016/j.apcatb.2016.03.034 [26] 李超, 王亦修, 孟凡超, 等. 氨基改性MIL-101(Cr)用于CH4/CO2吸附分离的研究[J]. 天然气化工(C1化学与化工), 2015, 40: 24-29. [27] 王方平, 夏昌坤, 陈敏, 等. 2-氨基-1, 3, 5-苯三甲酸的合成方法及其用于制备NH2-MOF-808的用途: CN 109796359. A[P]. 2019-05-24. [28] 陶海军, 黄艳芳, 王子惠, 等. 以羧酸盐为有机配体合成金属有机骨架材料MIL-101(Cr)[J]. 南京工业大学学报, 2018, 40(5): 40-47. [29] 李小蒙, 王旭坤, 吴怡秋, 等. 金属有机骨架纳米材料-固相萃取环境水样中亚硝胺类消毒副产物[J]. 环境化学, 2019, 38(6): 1258-1265. doi: 10.7524/j.issn.0254-6108.2018120603 [30] LU H, ZHANG H, WANG J, et al. A novel quinone/reduced graphene oxide composite as a solid-phase redox mediator for chemical and biological acid yellow 36 reduction[J]. RSC Advance, 2014, 88(4): 47297-47303. [31] 高曼. 基于双功能溶剂与MOFs的微萃取技术及其在污染物分析中的应用[D]. 温州: 温州医科大学, 2018. [32] 唐芳. 氨基MIL-101后修饰产物的制备、表征以及吸附脱硫脱氮性能研究[D]. 北京: 北京化工大学, 2018. [33] LIU Z, CHEN Y, SUN J, et al. Amine grafting on coordinatively unsaturated metal centers of MIL-101Cr for improved water absorption characteristics[J]. Inorganica Chimica Acta, 2018, 473: 29-36. doi: 10.1016/j.ica.2017.12.024 [34] WANG X R, LI H Q, HOU X J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19814-19821. doi: 10.1021/jp3052938 [35] WANG S P, HOU S H, WU C, et al. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid[J]. Chinese Chemical Letters, 2019, 30(2): 398-402. doi: 10.1016/j.cclet.2018.06.021 [36] 周圣文, 方亮, 赵欢, 等. 氯化亚锡和纳米二氧化硅对PET材料表面亲水性影响[J]. 表面技术, 2016, 45(4): 213-217. [37] 卢阳阳, 关舒会, 李玉博, 等. 叶菜中三种新型烟碱类农药的残留吸附动力学和复合效应初探[J]. 植物保护, 2018, 44(3): 37-42. [38] 姜媛. 不同生物质制备的高温生物炭对水中芳香性有机污染物的吸附机制及规律[D]. 杭州: 浙江大学, 2017. [39] ALLAN P, SCHAUMANN G E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review[J]. Environmental Science & Technology, 2014, 48(16): 8946-8962. [40] ROY A, ADHIKARI B, MAJUMDER S B. Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6502-6512. [41] 夏文君, 徐劼, 刘峰, 等. 秸秆生物炭对双氯芬酸钠的吸附性能研究[J]. 中国环境科学, 2019, 39(3): 160-166. [42] 张梦圆, 马晓国, 黄仁峰, 等. 砷(Ⅲ)离子印迹聚合物的制备及吸附性能研究[J]. 环境科学学报, 2013, 39(7): 3010-3017. [43] LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 38(11): 2221-2295. doi: 10.1021/ja02268a002 [44] 陈垂汉, 孙建洋, 李莹, 等. 印染污泥制备活性炭对亚甲基蓝的吸附[J]. 环境工程学报, 2018, 12(7): 26-32. [45] LIU T, XIE Z H, ZHANG Y, et al. Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water[J]. RSC Advance, 2017, 61(7): 38279-38286.