-
药品与个人护理品(pharmaceuticals and personal care products,PPCPs)包括各种药物化合物及日常护理用品[1]。水体环境中的PPCPS主要来源于过期药物的直接排放、制药废水的排放、未经处理的农业和养殖废水的直接排放[2]、人的排泄及个人护理品的广泛使用[3]。
萘普生(naproxen,NPX)化学名称为α-甲基-6-甲氧基-2-萘乙酸,可溶解于甲醇、乙醇和氯仿,几乎不溶解于水,具有较好的消炎、镇痛、解热作用,是常见的消炎药物之一[4]。NPX凭借毒性较低、毒副作用较小、药效明显、耐受性良好等优点成为全球最畅销的非处方药之一[5]。20世纪80年代,我国NPX年产量仅有10 t左右,2002年已突破200 t[6]。近年来,NPX的产量仍在增长[7]。有研究[8-9]发现,城市污水处理厂进水的NPX浓度水平在ng·L−1~µg·L−1,传统生物处理技术不能完全将NPX及其代谢产物从水中去除,导致NPX随出水进入环境水体,甚至在饮用水中也检测出了NPX。有研究[10]表明,长期摄入痕量的NPX会诱发心脏病、中风,对肺部产生毒害作用。目前,水中NPX主要处理方法包括吸附法、膜处理法、高级氧化法。吸附法对NPX的去除率较低,膜处理法则由于膜污染问题发展受到阻碍,以光催化剂技术为主的高级氧化法发挥了重要的作用。
光催化技术是高级氧化法的一种,以太阳能为光源,利用光催化剂的氧化还原的能力去除污染物[11]。光催化技术能够完全去除水中的有机污染物而且不产生二次污染,反应条件简单、效率高、矿化能力强[12]。近几年来,钨酸铋(Bi2WO6)作为新型光催化剂备受关注。Bi2WO6晶型为正交晶型,结构为层状结构,具备压电、铁电、催化等性能,化学稳定性较强,不会发生光化学腐蚀的现象[13],因而在离子半导体、铁磁性材料、催化和光解水制氢等领域有着广泛的应用[14]。Bi2WO6由于其良好的光催化性能,而被广泛应用于有机染料、有毒物质废水处理等领域。
Bi2WO6是具有高效催化性能的一种新型催化剂。NPX是常见的消炎药之一,其逐年增加的产量和用量对水体环境构成严重的影响。目前,关于Bi2WO6光催化降解NPX性能及机理方面的研究鲜有报道,因此,探明Bi2WO6光催化降解NPX过程的主要活性自由基及降解机理,将有助于为环境水体中NPX的高效去除开拓新思路。本研究以NPX为目标污染物,对Bi2WO6光催化降解NPX性能与机理进行研究;采用水热法制备Bi2WO6,通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、固体紫外-可见分光光度计(UV-vis)、比表面积及孔径测定仪(BET)对其微观形貌、晶体结构、禁带宽度及比表面积进行表征;详细考察NPX浓度、Bi2WO6投加量、阴离子种类、溶液pH对Bi2WO6光催化降解NPX效果的影响并确定最佳反应条件;通过COD去除效果评价反应体系矿化度,采用原位捕获实验定性分析反应过程中产生的活性自由基,利用高效液相色谱-离子阱-飞行时间质谱识别中间产物并提出NPX降解路径,揭示Bi2WO6光催化降解NPX机理;建立光催化降解NPX最佳反应体系,阐明NPX降解机理,为光催化技术去除环境水体中典型消炎药物提供参考。
钨酸铋光催化降解萘普生效果及其机理
Performance and mechanism of photocatalytic degradation of naproxen by bismuth tungstate
-
摘要: 以萘普生(NPX)为目标污染物,钨酸铋(Bi2WO6)为光催化剂,考察NPX浓度、Bi2WO6投加量、阴离子种类、溶液pH对Bi2WO6光催化降解NPX效果的影响并确定最佳反应条件。通过原位捕获实验、中间产物识别及反应体系化学需氧量(COD)去除效果,解析光催化过程产生的活性自由基种类及其作用、NPX降解路径及反应体系矿化度,揭示NPX降解机理。结果表明:经水热法制备的Bi2WO6为纯正交晶系,具有由2D纳米方片构成的3D花朵状结构,平均孔径为10.79 nm,比表面积为32.54 m2·g−1,带隙能为2.54 eV;在500 W长弧氙灯照射下,当NPX浓度为10 mg·L−1、Bi2WO6投加量0.4 g·L−1、溶液pH值为4.6时,NPX降解率可达99.83%,光照180 min时矿化度为67.91%,光照反应时间延长至360 min时矿化度为82.14%;Bi2WO6价带电势(3.01 eV)高于OH−/·OH和H2O/·OH的电势,因此,空穴(h+)能氧化OH−和H2O生成羟基自由基(·OH);而Bi2WO6导带电势(0.47 eV)同样高于O2/
$ \cdot {\rm{O}}_2^ - $ 的电势,单电子(e−)还原O2过程很难发生,只能经多e−还原O2,生成超氧自由基($ \cdot {\rm{O}}_2^ - $ )。同时还发现,h+和·OH在NPX降解过程中起主要氧化作用,$ \cdot {\rm{O}}_2^ - $ 起辅助作用。综合上述结果,NPX的降解机理是在活性自由基协同氧化下,NPX分子中的C—C、C—O、C=C键断裂发生脱羧反应和羟基化反应,生成结构简单的中间产物,中间产物继续氧化分解为小分子化合物并部分矿化成CO2和H2O。Abstract: In this study, NPX and bismuth tungstate (Bi2WO6) were selected as the target pollutant and photocatalyst, respectively. Then the effects of NPX concentration, Bi2WO6 dosage, types of anions and pH on NPX photocatalysis by Bi2WO6, and the optimal reaction conditions were determined. Through in situ capture experiments, intermediate procucts identification, chemical oxygen demand (COD) removal in the reaction system, the types and functions of the reactive radicals generated during photocatalytic process, degradation pathways of NPX, and mineralization degree of the reaction system were analyzed, then the mechanisms of photocatalytic degradation of NPX was elucidated. The results showed that Bi2WO6 prepared by hydrothermal method belonged to orthorhombic crystals, had a 3D flower structure composed of 2D nanoplates. The average pore diameter and specific surface area were 10.79 nm and 32.54 m2·g−1, respectively. The band gap energy was 2.54 eV. Under the conditions of 500 W Xenon lamp irradiation, 10 mg·L−1 NPX, Bi2WO6 dosage of 0.4 g·L−1 and solution pH of 4.6, NPX degaradation rate could reach 99.83%, the mineralization degree reached 67.91% after 180 min light radiation and reached 82.14% when light radiation time was prolonged to 360 min. Because of the potential of the valence band (3.01 eV) was higher than that of OH−/·OH and H2O/·OH, holes (h+) could oxidize OH− and H2O into hydroxyl radicals (·OH). But the potential of the conduction band (0.47 eV) was also higher than that of O2/$ \cdot {\rm{O}}_2^ - $ , the generation of superoxide radicals ($ \cdot {\rm{O}}_2^ - $ ) occurred through reduction of O2 by multi electrons (e−) instead of single e−. Therefore, the h+ and ·OH played major roles while$ \cdot {\rm{O}}_2^ - $ play an auxiliary role during the degradation of NPX. Under synergistic oxidation of h+, ·OH and$ \cdot {\rm{O}}_2^ - $ , the C—C, C—O, and C=C bonds of NPX were destroyed to produce intermediates with simple structure through decarboxylation and hydroxylation. The intermediates were continously decomposed into small molecular compounds which were further and partially mineralized into CO2 and H2O.-
Key words:
- photocatalysis /
- naproxen /
- bismuth tungstate /
- degradation mechanism /
- degradation performance
-
表 1 NPX光催化降解表观一级反应动力学参数
Table 1. Kinetic parameters of apparent first-order reaction of photocatalytic degradation of NPX
Bi2WO6初始
浓度/(g·L−1)表观一级反应
动力学方程K/min−1 R2 0.1 y=0.158 7x−0.08 0.158 7 0.995 0 0.2 y=0.376 5x−0.28 0.376 5 0.988 6 0.3 y=0.684 2x−0.62 0.684 2 0.976 7 0.4 y=1.228 4x−1.26 1.228 4 0.983 7 0.5 y=1.134 8x−0.52 1.134 8 0.986 7 表 2 Bi2WO6电势和物质摩尔比
Table 2. Potential and molar ratio of Bi2WO6
元素名称 电负性/eV 物质摩尔比 Bi 4.49 2.28 W 4.40 1.00 O 7.54 5.79 -
[1] 刘莹, 管运涛, 水野忠雄, 等. 药品和个人护理用品类污染物研究进展[J]. 清华大学学报(自然科学版), 2009, 49(3): 368-372. doi: 10.3321/j.issn:1000-0054.2009.03.014 [2] 赵青青, 高睿, 王铭璐, 等. 药物和个人护理品(PPCPs)去除技术研究进展[J]. 环境科学与技术, 2016, 39(S1): 119-125. [3] 代朝猛, 周雪飞, 张亚雷, 等. 环境介质中药物和个人护理品的潜在风险研究进展[J]. 环境污染与防治, 2009, 31(2): 77-80. doi: 10.3969/j.issn.1001-3865.2009.02.021 [4] JONES O A H, VOULVOULIS N, LESTER J N. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals[J]. Water Research, 2002, 36(20): 5013-5022. doi: 10.1016/S0043-1354(02)00227-0 [5] DEARMOND B, FRANCISCO C A, LIN J S, et al. Safety profile of over-the-counter naproxen sodium[J]. Clinical Therapeutics, 1995, 17(4): 587-601. doi: 10.1016/0149-2918(95)80036-0 [6] 张伦. 萘普生市场透析[J]. 中国药房, 2003, 14(6): 326-328. doi: 10.3969/j.issn.1001-0408.2003.06.002 [7] 张伦. 新剂型萘普生将成市场增长引擎[N]. 医药经济报, 2014-11-07(005). [8] SOUFAN M, DEBORDE M, DELMONT A, et al. Aqueous chlorination of carbamazepine: Kinetic study and transformation product identification[J]. Water Research, 2013, 47(14): 5076-5087. doi: 10.1016/j.watres.2013.05.047 [9] YAN Q, GAO X, HUANG L, et al. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model[J]. Chemosphere, 2014, 99: 160-170. doi: 10.1016/j.chemosphere.2013.10.062 [10] FENT K, WESTON A A, CAMINADA D. Ecotoxicology of human pharmaceuticals[J]. Aquatic Toxicology, 2006, 76(2): 122-159. doi: 10.1016/j.aquatox.2005.09.009 [11] DENG F, ZHAO L N, LUO X B, et al. Highly efficient visible-light photocatalytic performance of Ag/Ag In5S8 For degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater[J]. Chemical Engineering Journal, 2018, 333: 423-433. doi: 10.1016/j.cej.2017.09.022 [12] SHI W L, LV H C, YUAN S L, et al. Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/Ag Br nanocomposites[J]. Separation and Purification Technology, 2017, 174: 75-83. doi: 10.1016/j.seppur.2016.10.005 [13] MCDOWELL N A, KNIGHT K S, LIGHTFOOT P. Unusual high-temperature structural behavior in ferroelectric Bi2WO6[J]. Chemistry, 2006, 12(5): 1493-1499. doi: 10.1002/chem.200500904 [14] ZHANG L S, WANG H L, CHEN Z G, et al. Bi2WO6 micro/nanostructures: Synthesis, modifications an dvisible-light-driven photocatalytic applications[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 1-13. [15] GAO B, LIU L F, LIU J D. Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: Insight into degradation mechanism[J]. Applied Catalysis B: Environmental, 2014, 147: 929-939. doi: 10.1016/j.apcatb.2013.09.040 [16] 纪夏玲. 次氯酸钠氧化降解水体中萘普生的研究[D]. 广州: 广东工业大学, 2015. [17] XIA X H, XU J L, YUN Y. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide[J]. Journal of Environmental Sciences, 2002, 14(2): 188-194. [18] 樊佳敏, 王磊, 刘婷婷, 等. 普伐他汀的光催化降解性能及机理研究[J]. 中国环境科学, 2018, 38(6): 2157-2166. doi: 10.3969/j.issn.1000-6923.2018.06.018 [19] 于成龙. 羧酸化合物在粘土矿物-水界面上的吸附机制[D]. 北京: 中国地质大学, 2016. [20] 吕洋. pH值对光催化降解水中苯酚和氯酚的影响[D]. 深圳: 哈尔滨工业大学, 2008. [21] JO W K, LEE J Y, NATARAJAN T S. Fabrication of hierarchically structured novel redox-mediator-free ZnIn2S4 marigold flower/Bi2WO6 flower-like direct Z-scheme nanocomposite photocatalysts with superior visible light photocatalytic efficiency[J]. Physical Chemistry Chemical Physics, 2015, 18(2): 1000-1016. [22] 钟爽. Bi2WO6基可见光催化剂的制备及在连续流反应器中降解四环素废水的研究[D]. 长春: 吉林大学, 2016. [23] 刘丁菡. Bi2WO6-C复合光催化材料的制备、结构及性能研究[D]. 西安: 陕西科技大学, 2016. [24] LIU T T, WANG L, LU X, et al. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: Adsorption, active species, and pathways[J]. RSC Advances, 2017, 7: 12292-12300. doi: 10.1039/C7RA00199A [25] KANAKARAJU D, MOTTI C A, GLASS B D, et al. TiO2 photocatalysis of naproxen: Effect of the water matrix, anions and diclofenac on degradation rates[J]. Chemosphere, 2015, 139: 579-588. doi: 10.1016/j.chemosphere.2015.07.070 [26] JALLOULI N, ELGHNIJI K, HENTATI O, et al. UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment[J]. Journal of Hazardous Materials, 2016, 304: 329-336. doi: 10.1016/j.jhazmat.2015.10.045