-
基于硫酸根自由基(
$ {\rm{SO}}_4^{ \cdot - } $ )的高级氧化技术具有选择性小、反应条件温和、高效、快速等优势,已引起国内外学者的广泛关注[1-2]。过硫酸盐(PS)在过渡金属、碱、热等作用下,可激发过硫酸盐中的过氧基(—O—O—)产生硫酸根自由基[3-5]。过渡金属中的Fe2+因来源广泛、环境友好,因此,Fe2+活化是目前研究最多的一种活化方法。Fe2+活化PS也具有一些局限性,在加入少量Fe2+后,Fe2+被快速氧化成Fe3+,无法再生,故不利于反应持续有效地进行;但增加Fe2+的用量,会导致体系中自由基的淬灭反应。因此,Fe2+/PS体系中可引入具有还原性的物质,以保证PS活化过程持续有效进行。近年来,一些含有氧化敏感型官能团结构的有机物如(醌类[6]、酚类[7-8]、醇类[9])被证实对过硫酸盐具有活化作用。而这些有机化合物主要是通过自身含氧官能团电子的得失,形成苯氧自由基,从而引发电子转移激活PS。FANG等[6]的研究表明,在一定条件下,对苯醌与对苯酚之间通过电子的转移,可生成具有活化PS作用的半醌自由基(HQ·)。邻苯醌在水相中有类似于对醌的3种形态:完全还原态(H2Q)、中间氧化态(HQ·)、完全氧化态(Q)[10]。多巴胺(DA)是一种具有邻苯二酚结构的有机化合物,可通过氧化自聚形成具有酚醌结构的聚多巴胺[11-12],其酚醌之间也可进行电子转移[13],可促进PS的活化生成硫酸根自由基。
本研究以PP非织造材料为基体,采用多巴胺(DA)和聚乙烯亚胺(PEI)共沉积法制备了PDA/PEI@PP材料,多巴胺和聚乙烯亚胺可通过交联共沉积作用附着在固体表面[14],制备得到稳定性好、亲水性强且具有酚醌共存结构的复合材料。LENG等[15]的研究表明,具有电子穿梭作用的苯二酚对Fe3+具有还原作用,而PDA/PEI@PP表面也具有邻苯二酚结构[14, 16],对Fe3+可能具有一定的还原作用。因此,本研究将PDA/PEI@PP引入Fe2+活化过硫酸盐体系中,考察了同时具有邻苯醌和邻苯二酚结构的PDA/PEI@PP材料对Fe2+/PS体系的协同催化活化性能及相关的机理,探讨了PDA/PEI@PP材料在过硫酸体系中对Fe3+的还原作用,旨在为提高Fe2+活化PS氧化降解污染物提供一种新途径。
聚多巴胺/聚乙烯亚胺复合非织造布/Fe2+活化过硫酸盐催化氧化酸性红B的效果分析
Effect analysis of catalytic oxidation of acid red B by polydopamine/ polyethyleneimine nonwoven/Fe2+ activated persulfate
-
摘要: 以聚丙烯(PP)非织造布为基体,采用多巴胺聚乙烯亚胺共沉积法制备了聚多巴胺/聚乙烯亚胺复合非织造布(PDA/PEI@PP),研究了PDA/PEI@PP在Fe2+活化过硫酸盐(PS)降解酸性红B(ARB)的中的性能和反应机理。通过SEM对材料结构进行了表征,考察了不同体系(PS、PDA/PEI@PP/PS、Fe2+/PS和PDA/PEI@PP/Fe2+/PS)中ARB的降解效果,通过电子自旋共振波谱(ESR)和傅里叶红外光谱(FT-IR)分析了PDA/PEI@PP活化PS及自由基生成的机理,此外,考察了PDA/PEI@PP对Fe3+的还原作用。结果表明:PDA/PEI@PP非织造材料具有贯穿的孔道结构,利于PDA/PEI@PP表面官能团对PS的活化;PDA/PEI@PP对Fe2+/PS体系的催化氧化具有促进作用,当Fe2+初始浓度为0.5 mmol·L−1时,90 min内对ARB的降解率为98%,反应速率常数为0.040 min−1;在不添加Fe2+的情况下,PDA/PEI@PP可直接活化PS产生自由基降解ARB,降解率为56%;PDA/PEI@PP表面的邻苯二酚基团与邻醌基反应生成半醌,从而活化PS产生硫酸根自由基(
$ {\rm{SO}}_4^{ \cdot - } $ )和羟基自由基(·OH);同时PDA/PEI@PP表面的邻苯二酚基团也对Fe3+具有还原作用,生成Fe2+持续活化PS。因此,PDA/PEI@PP对于Fe2+活化PS的促进作用主要是通过PDA/PEI@PP对PS协同活化和对Fe3+的还原作用来实现的。本研究为进一步提高Fe2+活化PS氧化降解染料废水的效率提供了一种较好的解决方案。Abstract: In this study, polypropylene (PP) nonwoven was taken as matrix, the co-deposition method of dopamine and polyethyleneimine was used to prepare the polydopamine/polyethyleneimine-functionalized polypropylene nonwoven (PDA/PEI@PP). The performance and mechanism of PDA/PEI@PP on Fe2+ activated persulfate (PS) and degrading acid red B (ARB) were studied. SEM was used to characterize the PDA/PEI@PP material. The ARB degradation effects in different systems of PS, PDA/PEI@PP/PS, Fe2+/PS and PDA/PEI@PP/Fe2+/PS were also studied. Electron spin-resonance spectroscopy (ESR) and Fourier transform infrared (FT-IR) were used to identify the mechanism of PDA/PEI@PP activated PS and radicals formation. In addition, the reduction of Fe3+ by PDA/PEI@PP was investigated. The results showed that the throughout pore structure was presented in PDA/PEI@PP nonwoven material, which facilitated PS activation by the surface functional groups of PDA/PEI@PP. PDA/PEI@PP could promote the catalytic oxidation of Fe2+/PS system, the degradation rate of ARB could reach 98% within 90 min when the initial content of Fe2+ was 0.5 mmol·L−1, and the reaction rate constant was 0.040 min−1. Without the addition of Fe2+, PDA/PEI@PP could directly activate PS, produce radicals for ARB degradation with a rate of 56%. On the surface of PDA/PEI@PP, the catechol groups reacted with o-quinone groups to produce semiquinone, which could activate PS and produce sulfate radical ($ {\rm{SO}}_4^{ \cdot - } $ ) and hydroxyl radical (·OH). At the same time, the catechol groups on the surface of PDA/PEI@PP also could reduce the Fe3+ to Fe2+, which could sustainably activate PS. Therefore, the promoting effects of PDA/PEI@PP on Fe2+ activated PS are mainly due to the synergetic activation of PS and Fe3+ reduction by PDA/PEI@PP. The study provides a better solution for further improving the efficiency of oxidation degradation of dye wastewater by Fe2+ activated PS. -
-
[1] XIAO R, LUO Z, WEI Z, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2018, 19: 51-58. doi: 10.1016/j.coche.2017.12.005 [2] 高焕方, 龙飞, 曹园城, 等. 新型过硫酸盐活化技术降解有机污染物的研究进展[J]. 环境工程学报, 2015, 9(12): 5659-5664. doi: 10.12030/j.cjee.20151202 [3] GUO Y G, ZHOU J, LOU X Y, et al. Enhanced degradation of tetrabromobisphenol a in water by a UV/base/persulfate system: Kinetics and intermediates[J]. Chemical Engineering Journal, 2014, 254: 538-544. doi: 10.1016/j.cej.2014.05.143 [4] 王继鹏, 胡林潮, 杨彦, 等. Fe2+活化过硫酸钠降解1,2-二氯苯[J]. 环境工程学报, 2014, 8(9): 3767-3772. [5] 栾海彬, 杨立翔, 鲁帅, 等. 热活化过硫酸盐对双酚A的降解及其机理[J]. 环境工程学报, 2016, 10(5): 2459-2464. doi: 10.12030/j.cjee.201412139 [6] FANG G, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47(9): 4605-4611. [7] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. [8] LIN Y T, CHIU Y T, CIOU C, et al. Natural organic activator quercetin for persulfate oxidative degradation of halogenated hydrocarbons[J]. Environmental Science: Water Research & Technology, 2019, 5(6): 1064-1071. [9] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1962, 62(3): 185-203. doi: 10.1021/cr60217a001 [10] JIANMING L, ROSOKHA S V, NERETIN I S, et al. Quinones as electron acceptors. X-ray structures, spectral (EPR, UV-vis) characteristics and electron-transfer reactivities of their reduced anion radicals as separated vs contact ion pairs[J]. Journal of the American Chemical Society, 2006, 128(51): 16708-16719. doi: 10.1021/ja066471o [11] LEEDEN V D, MIEKE C. Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?[J]. Langmuir, 2005, 21(24): 11373-11379. doi: 10.1021/la0515468 [12] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241 [13] DU S, LIAO Z J, QIN Z L, et al. Polydopamine microparticles as redox mediators for catalytic reduction of methylene blue and rhodamine B[J]. Catalysis Communications, 2015, 72: 86-90. doi: 10.1016/j.catcom.2015.09.020 [14] ZHAO C X, ZUO F, LIAO Z J, et al. Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer[J]. Macromolecular Rapid Communications, 2015, 36(10): 909-915. doi: 10.1002/marc.201500021 [15] LENG Y Q, GUO W L, SHI X, et al. Degradation of rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle[J]. Chemical Engineering Journal, 2014, 240: 338-343. doi: 10.1016/j.cej.2013.11.090 [16] D'ISCHIA M, NAPOLITANO A, PEZZELLA A, et al. Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials[J]. Angewandte Chemie International Edition, 2009, 48(22): 3914-3921. doi: 10.1002/anie.200803786 [17] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1543. [18] ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254-255: 228-235. doi: 10.1016/j.jhazmat.2013.03.056 [19] FANG G D, DIONYSIOU D D, ZHOU D M, et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature[J]. Chemosphere, 2013, 90(5): 1573-1580. doi: 10.1016/j.chemosphere.2012.07.047 [20] WU M B, YANG H C, WANG J J, et al. Janus membranes with opposing surface wettability enabling oil-to-water and water-to-oil emulsification[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5062-5066. [21] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016. [22] SHURYGINA M P, KURSKII YU A, CHESNOKOV S A, et al. O-benzoquinone photoreduction products in the presence of N,N-dimethylanilines[J]. Russian Chemical Bulletin, 2006, 55(9): 1585-1592. doi: 10.1007/s11172-006-0458-x [23] CHEN R Z, PIGNATELLO J J. Role of quinone intermediates as electron shuttles in fenton and photoassisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology, 1997, 31(8): 2399-2406.