-
近年来,纺织印染废水处理已成为制约我国纺织印染行业可持续发展的重要问题。在地方和行业排放标准提高的背景下,采用传统水处理工艺如生物法、絮凝沉淀法和吸附法单独处理上述废水时往往难以达标,而化学氧化法、光催化氧化法和电化学法又由于运行成本的高昂未能在利润微薄的印染企业得以推广。化学氧化法包括臭氧氧化法、芬顿法和高温深度氧化法。较之其他的化学氧化法,芬顿法在目前难降解印染废水处理中应用较多,但其也存在铁泥处理、大量酸碱调节pH、亚铁离子催化作用慢等问题[1-4]。次氯酸钠具有强氧化性,且价格低廉(1t含10%~11%有效氯的液体次氯酸钠的价格为600元)。但次氯酸钠在温度较高或者在日光照射的条件下,容易发生分解反应,生成氯酸钠、氯化钠和氯化氢气体等,因而大大降低了其强氧化性的利用率。如何提高次氯酸钠氧化性能的利用率对拓宽其在水处理中的应用至关重要。
次氯酸钠的氧化性在镍、铁、锰等过渡金属氧化物/氢氧化物的作用下可大大增强[5-6]。其中,镍基催化剂由于具有催化活性高、分散性好和价格低廉的优点而备受关注[7-9]。有学者[10-11]采用NaClO/Ni2O3催化体系处理印染废水,取得了较好的效果,但催化剂Ni2O3在应用过程中的转化、溶解和处理后出水中Ni2+溶出量方面研究的缺失限制了该催化氧化工艺的应用及推广。此外,市售Ni2O3为黑色粉末,若直接用于水处理的话,很容易流失,从而导致金属镍的二次污染。有科研人员[7-9]在400~500 ℃高温焙烧制取镍基催化剂,用于促进次氯酸钠的分解。本课题组的预研结果表明,用高温焙烧法制取的颗粒型催化剂不能有效地促进次氯酸钠的分解。
活性艳红K-2BP分子式为C25H14N7Na3O10S3Cl2,相对分子质量为808.48,最大吸收波长为534.5 nm。K-2BP分子结构包含1个偶氮基,一氯均三嗪基及2个苯环和1个萘环。苯环和萘环上有3个磺酸基(图1)。这些芳香环上的共轭链使染料显色,也使其具备了高水溶性、在自然条件下难降解的特性。一般来说,染料分子结构中共轭链越长,颜色越深。采用生物法降解这类染料,一般需要厌氧/好氧组合工艺才能获得良好的处理效果。顾梦琪等[12]采用水解酸化/AO组合工艺处理活性艳红X-3B的印染废水,取得了良好的效果。总的来说,如何低成本、高效率地处理这类高色度及难降解的废水一直是水处理领域的一项难题[13-14]。
本文旨在采用简单易行的氧化铝小球浸渍法制备一种使用方便、催化效果好、不会流失、不产生二次Ni2+污染的镍基催化剂NiOx(OH)y,并采用NaClO和该催化剂组成的体系降解模拟印染废水中的活性艳红K-2BP,考察了在不同反应条件下该体系对活性艳红K-2BP的处理效果和处理后出水中Ni2+的溶出情况,以期为开发一种性价比较高的水处理催化氧化新工艺提供参考。
NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果
Degradation and decolorization of reactive brilliant red K-2BP in simulated printing and dyeing wastewater by NiOx(OH)y/NaClO catalytic oxidation system
-
摘要: 采用NaClO和浸渍法制备的小球型复合镍基催化剂NiOx(OH)y/γ-Al2O3组成的体系,对活性艳红K-2BP模拟废水进行了降解脱色的系统研究,探讨了反应条件对脱色率和反应后出水中Ni2+溶出量的影响,分析了染料的降解机理。结果表明:该体系对染料的脱色效果良好,脱色率随着染料浓度的增加而降低,其随着初始pH、有效氯和催化剂投加量的增加而增加;连续流实验中染料的脱色率达到80%以上,在运行至9 000 min时,催化剂没有出现失活现象;原子氧在染料降解过程中起到主导作用。采用SEM和XPS对催化层结构进行了表征,催化层中的化学吸附氧占比先增加后减小,新制备的催化层的化学吸附氧占比为87%;当用过720 min后,其占比增大到91%;经连续流实验运行3 000 min后,其占比降低到83%。本催化体系在印染废水处理中具有一定的应用潜力。Abstract: Degradation and decolorization of simulated reactive brilliant red K-2BP wastewater were systematically studied in a system composed of NaClO and bead-type composite nickel-based catalyst NiOx(OH)y/γ-Al2O3 prepared by impregnation method. The effects of reaction conditions on decolorization rate of the simulated wastewater and Ni2+ leaching amount in the treated effluent were discussed, and the degradation mechanism of the dye was also analyzed. The results showed that the system had a good decolorization effect on the dye, and the decolorization rate decreased with the increase of dye concentration, and increased with the increase of initial pH, available chlorine and catalyst dosage. In the continuous flow test, the decolorization rate was over 80%, and the deactivation of catalyst did not occur after 9000 min operation. Atomic oxygen played an important role in the degradation of reactive brilliant red K-2BP. The structure of the catalytic layer was characterized by SEM and XPS. The proportion of chemisorbed oxygen in the catalytic layer increased first and then decreased, it was 87% in the newly prepared catalytic layer, and rose to 91% after 720 min running, then decreased to 83% after 3 000 min of the continuous flow test. This catalytic oxidation system has certain potential applications in printing and dyeing wastewater treatment.
-
表 1 不同初始活性艳红K-2BP浓度下拟一级动力学方程及参数
Table 1. Pseudo-first-order kinetic equations and parameters at different initial concentrations of reactive brilliant red K-2BP
染料初始浓度/
(mg·L−1)反应动力学方程 R2 k/min−1 100 lnC0/C =0.030 3t 0.976 57 0.030 3 200 lnC0/C=0.029 5t 0.979 68 0.029 5 300 lnC0/C=0.023 6t 0.980 40 0.023 6 400 lnC0/C=0.021t 0.989 82 0.021 表 2 不同初始有效氯下拟一级动力学方程及参数
Table 2. Pseudo-first-order kinetic equations and parameters at different initial available chlorine
有效氯初始浓度/
(mg·L−1)反应动力学方程 R2 k/min−1 60 lnC0/C =0.019 3t 0.973 85 0.019 3 120 lnC0/C =0.027 2t 0.980 94 0.027 2 180 lnC0/C =0.029 3t 0.983 47 0.029 3 250 lnC0/C=0.032 1t 0.978 97 0.032 1 表 3 不同初始pH下拟一级动力学方程及参数
Table 3. Pseudo-first-order kinetic equations and parameters at different initial pH values
初始pH 反应动力学方程 R2 k/min-1 6 lnC0/C=0.020 3t 0.960 44 0.020 3 7 lnC0/C=0.025 3t 0.968 46 0.025 3 8 lnC0/C=0.031 5t 0.955 08 0.031 5 9 lnC0/C=0.032 1t 0.957 38 0.032 1 表 4 不同催化剂投加量下拟一级动力学方程及参数
Table 4. Pseudo-first-order kinetic equation and parameters at different catalyst dosages
催化剂投加量/
(g·L−1)反应动力学方程 R2 k/min−1 80 lnC0/C=0.016 8t 0.918 81 0.016 8 160 lnC0/C=0.020 8t 0.964 86 0.020 8 240 lnC0/C=0.025 5t 0.982 73 0.025 5 400 lnC0/C=0.035 2t 0.979 79 0.035 2 4001) lnC0/C=0.012 5t 0.939 01 0.012 5 注:1)用过720 min的催化剂。 表 5 催化剂表面元素的相对占比
Table 5. Relative proportion of catalyst surface elements
元素 峰位置 结合能/eV 相对含量/% 新制备的
催化剂用过720 min
的催化剂用过3 000 min
的催化剂新制备的
催化剂用过720 min
的催化剂用过3 000 min
的催化剂Ni Ni(OH)2,2p3/2 855.98 855.96 855.86 6.34 5.25 10.61 Ni Ni(OH)2,2p1/2 873.61 873.58 873.26 Ni NiOOH,2p3/2 861.86 861.94 861.54 3.92 2.21 4.84 Ni NiOOH,2p1/2 879.81 879.94 879.54 O O1s 531.20 531.28 531.47 87.67 90.61 83.08 S S2p 168.67 168.62 168.48 2.07 1.93 1.47 -
[1] BEHIN J, AKBARI A, MAHMOUDI M, et al. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale[J]. Water Research, 2017, 121: 120-128. [2] GANIYU S O, ZHOU M H, HUITLE C A M. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235: 103-129. [3] GU T, DONG H X, LU T L, et al. Fluoride ion accelerating degradation of organic pollutants by Cu(II)- catalyzed Fenton-like reaction at wide pH range[J]. Journal of Hazardous Materials, 2019, 377: 365-370. [4] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121. [5] 盛梅, 马芬, 杨文伟. 次氯酸钠溶液稳定性研究[J]. 化工技术与开发, 2005, 34(3): 8-10. doi: 10.3969/j.issn.1671-9905.2005.03.004 [6] 任连扣. 金属离子对次氯酸钠分解的影响及其存在形态[J]. 中国氯碱, 1989(11): 61-62. [7] 申晨, 梅华, 石晓鹏, 等. 镍基催化剂的改性及其提高NaClO氧化性能[J]. 化学反应工程与工艺, 2010, 26(1): 47-51. doi: 10.3969/j.issn.1001-7631.2010.01.009 [8] 石晓鹏, 梅华, 姚虎卿. 改性镍基催化剂催化增强次氯酸钠氧化性的性能研究[J]. 工业催化, 2009, 17(8): 72-76. doi: 10.3969/j.issn.1008-1143.2009.08.015 [9] 石晓鹏, 梅华, 沈健. Ni2O3催化剂的制备及其催化NaClO分解产生活性氧的性能[J]. 化工进展, 2009, 28(6): 962-966. doi: 10.3321/j.issn:1000-6613.2009.06.010 [10] 潘峰, 吴家瑶. 催化氧化法处理印染废水试验[J]. 污染防治技术, 1999, 12(2): 109-110. [11] 谢少雄, 黄功浩, 何淑妤. 催化氧化法处理印染废水的试验研究[J]. 汕头大学学报(自然科学版), 2003, 18(2): 40-44. [12] 顾梦琪, 尹启东, 刘爱科, 等. 水解酸化/AO组合工艺处理印染废水色度去除与脱氮性能[J]. 环境科学, 2018, 39(12): 5550-5557. [13] KHEHRA M S, SAINI H S, SHARMA D K, et al. Biodegradation of azo dye C. I. acid red 88 by an anoxic-aerobic sequential bioreactor[J]. Dyes and Pigments, 2006, 70(1): 1-7. [14] AHMAD A, MOHD-SETAPAR S H, CHUONG C S, et al. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater[J]. RSC Advances, 2015, 39(5): 30801-30818. [15] LIN K Y A, ZHANG Z Y. Degradation of bisphenol a using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. [16] MA J, LI H Y, CHI L P, et al. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature[J]. Chemosphere, 2017, 189: 86-93. [17] 李蕾, 夏思淝, 刘文利, 等. 气敏金属氧化物吸附氧负离子 $ {\rm{O}}_2^ - $ , O−的研究[J]. 山东工业大学学报, 1994, 24(3): 287-290.[18] LI LS, LI J H, BAI J, et al. The effect and mechanism of organic pollutants oxidation and chemical energy conversion for neutral wastewater via strengthening reactive oxygen species[J]. Science of the Total Environment, 2019, 651(1): 1226-1235. [19] ZENG Q F, FU J, ZHOU Y, et al. Photooxidation degradation of reactive brilliant red K-2BP in aqueous solution by ultraviolet radiation/sodium hypochlorite[J]. Clean Soil Air Water, 2009, 37(7): 574-580. [20] XU W Y, GAO H Y. Preparation of bead-type NiOx(OH)y catalyst for hypochlorite conversion and reactive brilliant red K-2BP degradation[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103522. [21] 谭浩强, 何文杰, 谢桂丽, 等. 化学沉淀法强化常规工艺去除水中镍的应急处理[J]. 供水技术, 2012, 6(4): 1-4. doi: 10.3969/j.issn.1673-9353.2012.04.001 [22] MONTEAGUDO J M, DURÁN A, SAN-MARTIN I, et al. Roles of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process[J]. Applied Catalysis B-Environment, 2011, 106(1/2): 242-249. [23] 陈柏言. 冰中黑炭来源单线态氧的光化学生成[D]. 长春: 吉林大学, 2017. [24] DEROSA M C, CRUTCHLEY R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 2002, 233-234: 351-371. [25] 吴峰, 华河林, 邓南圣. 三种偶氮染料降解历程在紫外-可见光谱上的表现[J]. 环境化学, 2000, 19(4): 348-351. doi: 10.3321/j.issn:0254-6108.2000.04.010 [26] 徐向荣, 王文华, 李华斌. Fenton试剂与染料的反应[J]. 环境科学, 1999, 20(3): 72-74. doi: 10.3321/j.issn:0250-3301.1999.03.019 [27] BAÊTA B E L, LIMA D R S, SILVA S Q, et al. Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye[J]. Chemical Engineering Journal, 2015, 259: 936-944. [28] YANG S X, ZHU W P, JIANG Z P, et al. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006, 252(24): 8499-8505. [29] YANG S X, FENG Y J, WAN J F, et al. Effect of CeO2 addition on the structure and activity of RuO2/γ-Al2O3 catalyst[J]. Applied Surface Science, 2005, 246(1/2/3): 222-228. [30] YUE D T, GUO C, YAN X, et al. Secondary battery inspired NiO nanosheets with rich Ni(III) defects for enhancing persulfates activation in phenolic waste water degradation[J]. Chemical Engineering Journal, 2019, 360: 97-103.