-
水体富营养化是当今社会面临的主要水环境问题之一,如何有效地控制水体中的氮、磷仍是当前亟待解决的问题[1-3]。生物修复是现代原位处理富营养化水体的主要研究方向之一[4]。植物修复技术是生物修复技术的重要组成部分,因其成本较低、环境友好而受到广泛关注[5-6]。水生植物修复的机理主要包括水生植物的吸收同化、底物吸附、微生物降解和其他作用[7-8]。植物吸收同化是去除水中营养物质的重要方式,水生植物能利用其发达的根系完成对水中营养物质的富集、转化和吸收,进行生长代谢[9]。通过对植物进行合理收割可实现氮磷的空间转移[10-11]。然而,水生植物对氮磷的吸收能力和偏好有所不同[12]。ZHU等[3]探究了7种水生植物人工浮岛对富营养化水体中养分的吸收特点,发现7种植物的氮和磷积累量分别为0.51~4.48 g·m−2和0.06~0.33 g·m−2,水芹和满天星对氮磷的去除效果最好。BARYA等[13]研究发现,种植美人蕉的人工湿地对污水TN和TP的去除率分别达到60.37%和81.53%,略高于种植菖蒲的人工湿地所对应的56.33%和79.57%。QIN等[14]通过原位修复实验发现,凤眼莲凭借着发达的根系对氮有着超强的累积能力,占TN去除率的58.64%,但对TP的去除能力弱于水浮莲。
植物吸收动力学是比较不同植物养分吸收特性的有效方法。米氏(Miehaelis-Menten)学说创建于20世纪50年代初,解释了植物根系对离子吸收的原理,促进了根系养分离子吸收动力学的发展,并为植物元素吸收的研究提供了可量化的手段[15]。研究水生植物的养分吸收动力学特性,可有助于评价不同植物对水体养分状况的适应性、鉴定并筛选收高效的植物品种[16]。
当前研究多单独探究水生植物的修复机理[17-18],或只利用耗竭法探究植物在不同浓度下对营养物质的吸收特性[19-20],很少从水生植物对营养物质的吸收特性理论上分析水生植物及其组合对营养物质的同化量和去除效果的影响,并依据吸收动力学计算结果优化植物修复富营养化水体中的植物配置。本研究首先探究了苦草、凤眼莲和菖蒲对
${{\rm{H}}_2}{\rm{PO}}_4^ - $ 、${\rm{NH}}_4^ + $ 和${\rm{NO}}_3^ - $ -N的吸收动力学特征和差异;进而通过模拟实验探究了3种水生植物单独和相互组合系统对水中氮磷的去除效果,分析了植物吸收同化对氮磷去除的贡献,以期得到植物营养吸收特性与系统的去除效果之间的耦合关系,并找出净水效果最好的植物系统。本研究可为今后利用吸收特性曲线选择合适的水生植物修复不同类型的富营养化水体提供参考。
3种水生植物及其组合吸收去除水中氮磷的比较
Comparison of the absorption and removal of nitrogen and phosphorus from waterbody by three aquatic plants and their combinations
-
摘要: 选取苦草(Vallisneria natans)、菖蒲(Acorus calmus)和凤眼莲(Eichhornia crassipes)为研究对象,研究了水生植物及其组合去除污染水体中氮磷的性能及机理,采用常规耗竭法探究了3种水生植物养分吸收动力学特征。结果表明:3种水生植物对
${ {\rm{NH}}_4^ +} $ -N的最大吸收速率(Imax)显著高于${ {\rm{NO}}_3^ - }$ -N,菖蒲和凤眼莲对$ {{\rm{NO}}_3^ - }$ -N的吸收能力强于苦草,苦草对$ { {{\rm{H}}_2}{\rm{PO}}_4^ -} $ 的吸收速率较大。7组植物组合对水中${ {\rm{NH}}_4^ + }$ -N的去除率均大于98.29%,苦草+菖蒲+凤眼莲组对水中$ { {\rm{NO}}_3^ -} $ -N、TN和TP去除率最高,分别为79.79%、80.34%和97.50%;苦草+凤眼莲组对TN和TP的植物同化比去除率最高,分别为29.53 mg·(kg·d)−1和2.46 mg·(kg·d)−1。各植物系统中同化是植物修复去除水中氮磷的主要途径,其对氮和磷的总去除率分别为25.61%~64.33%和22.03%~81.04%。水生植物组合显著提高了对氮磷的协同吸收能力和去除效果。Abstract: Vallisneria natans, Acorus calmus and Eichhornia crassipes were selected as the study objects, and the performance and primary mechanism of nitrogen and phosphorus removal from polluted waterbodies were investigated. The standard depletion method was used to investigate the dynamic characteristics of nutrients absorption by the three aquatic plants. The results showed that the maximum absorption rates (Imax) of$ {\rm{NH}}_4^ + $ -N were significantly higher than those of$ {\rm{NO}}_3^ - $ -N by the three aquatic plants, the NO3-N absorption ability by Acorus calamus or Eichhornia crassipes was stronger than that by Vallisneria natans, and the absorption rate of$ {{\rm{H}}_2}{\rm{PO}}_4^ - $ by Vallisneria natans was higher than other plants. All the removal rates of$ {\rm{NH}}_4^ + $ -N in polluted water by the seven plant combinations were higher than 98.29%. The removal rates of$ {\rm{NO}}_3^ - $ -N, TN and TP in the water by the combined group of Vallisneria natans + Acorus calamus + Eichhornia crassipes were the highest, they were 79.79%, 80.34% and 97.50%, respectively. The highest plant assimilation removal rates of TN and TP by the Eichhornia crassipes group were 29.53 and 2.46 mg·(kg·d)−1, respectively. Assimilation is the main way for phytoremediation to remove nitrogen and phosphorus from polluted water by each plant combination, and their total removal rates of nitrogen and phosphorus were 25.61%~64.33% and 22.03%~81.04%, respectively. The combination of aquatic plants significantly improves the synergstic absorption capacity and removal effect of nitrogen and phosphorus.-
Key words:
- phytoremediation /
- aquatic plants /
- eutrophication /
- absorption kinetic
-
表 1 苦草、凤眼莲和菖蒲对
${\bf{NH}}_4^ + $ 吸收动力学参数Table 1. Kinetic parameters of the absorption of
${\rm{NH}}_4^ + $ by Vallisneria natans, Eichhornia crassipes and Acorus calamus植物 消耗曲线方程及拟合度 Imax/(mg·(g·h)−1) Km/(mg·L−1) Cmin/(mg·L−1) 苦草 y=0.002 3x2−0.239 2x+19.949 6,R2=0.983 3 0.402 5 15.245 1 13.676 9 菖蒲 y=0.004 4x2−0.194 0x+19.834 0,R2=0.954 0 0.415 1 15.162 7 13.760 2 凤眼莲 y=0.005 6x2−0.354 8x+19.370 0,R2=0.975 0 0.443 5 18.227 2 17.691 6 表 2 苦草、凤眼莲和菖蒲对
${\bf{NO}}_3^ - $ -N的吸收动力学参数Table 2. Kinetic parameters of the absorption of
${\rm{NO}}_3^ - $ -N by Vallisneria natans, Eichhornia crassipes and Acorus calamus植物 消耗曲线方程及拟合度 Imax/(mg·(g·h)−1) Km/(mg·L−1) Cmin/(mg·L−1) 苦草 y=0.000 8x2−0.099 1x+19.953 7,R2=0.992 5 0.124 9 17.645 0 16.875 4 菖蒲 y=0.003 8x2−0.152 8x+19.823 2,R2=0.964 8 0.317 9 16.616 0 15.594 7 凤眼莲 y=0.002 8x2−0.215 4x+19.679 7,R2=0.968 3 0.325 0 18.667 5 18.282 3 表 3 苦草、凤眼莲和菖蒲对
${{\bf{H}}_2}{\bf{PO}}_4^ - $ 的吸收动力学参数Table 3. Kinetic parameters of the absorption of
${{\rm{H}}_2}{\rm{PO}}_4^ - $ by Vallisneria natans, Eichhornia crassipes and Acorus calamus植物 消耗曲线方程及拟合度 Imax/(mg·(g·h)−1) Km/(mg·L−1) Cmin/(mg·L−1) 苦草 y=0.000 1x2−0.017 4x+2.013 4,R2=0.984 3 0.033 1 1.523 0 1.359 5 菖蒲 y=0.000 7x2−0.032 9x+1.989 2,R2=0.984 9 0.026 7 1.690 0 1.595 9 凤眼莲 y=0.000 3x2−0.022 9x+1.972 4,R2=0.983 0 0.022 5 1.711 3 1.618 6 表 4 各植物组中植物生长情况和氮磷含量变化
Table 4. Changes in plant growth conditions and content of nitrogen and phosphate in different plant combinations
植物
组合植物
名称数量/株 起始状态 结束状态 鲜质量/g 氮含量/(mg·g−1) 磷含量/(mg·g−1) 鲜质量/g 氮含量/(mg·g−1) 磷含量/(mg·g−1) 根 叶 根 叶 根 叶 根 叶 苦草 苦草 24 60.00 22.34±0.74b 34.50±1.25b 4.03±0.31a 8.26±0.63a 82.23±8.09 24.22±0.88e 31.96±0.49cd 4.28±0.63a 8.57±0.69a 凤眼莲 凤眼莲 6 120.00 15.79±0.58c 39.30±1.38a 3.08±0.24b 7.70 ±1.46b 170.20±13.36 23.81±0.62g 44.51±1.36a 3.22±0.22d 7.14±1.03e 菖蒲 菖蒲 6 120.00 25.44±0.82a 29.88±1.76c 2.08±0.20c 3.44±0.58c 133.21±10.73 27.84±1.28a 28.59±0.77d 2.20±0.18e 3.50±0.44f 苦草+凤眼莲 苦草 12 30.00 22.34±0.74b 34.50±1.25b 4.03±0.31a 8.26±0.63a 56.46±4.67 21.49±0.29h 36.72±1.06b 4.38±0.29a 8.76±0.39a 凤眼莲 3 60.00 15.79±0.58c 39.30±1.38a 3.08±0.24b 7.70 ±1.46b 96.63±10.42 24.01±0.35f 45.66±1.88a 3.35±0.43c 7.26±1.02d 苦草+菖蒲 苦草 12 30.00 22.34±0.74b 34.50±1.25b 4.03±0.31a 8.26±0.63a 58.99±6.31 22.78±0.44h 33.24±1.49c 4.22±0.65a 8.36±1.18bc 菖蒲 3 60.00 25.44±0.82a 29.88±1.76c 2.08±0.20c 3.44±0.58c 63.42±5.84 28.75±0.62a 32.68±0.73cd 2.04±0.17e 3.51±0.75f 菖蒲+凤眼莲 菖蒲 3 60.00 25.44±0.82a 29.88±1.76c 2.08±0.20c 3.44±0.58c 63.24±9.33 25.29±0.79d 30.17±1.39d 2.23±0.09e 3.53±0.49f 凤眼莲 3 60.00 15.79±0.58c 39.30±1.38a 3.08±0.24b 7.70 ±1.46b 86.86±7.24 24.18±0.83e 41.79±1.62a 3.37±0.27c 7.93±0.64c 苦草+菖蒲+
凤眼莲苦草 8 20.00 22.34±0.74b 34.50±1.25b 4.03±0.31a 8.26±0.63a 41.80±8.17 24.76±0.47c 43.50±1.37a 4.79±0.83a 8.63±0.71a 菖蒲 2 40.00 25.44±0.82a 29.88±1.76c 2.08±0.20c 3.44±0.58c 42.04±5.29 26.44±0.74a 31.06±0.49d 2.44±0.37e 3.66±0.55f 凤眼莲 2 40.00 15.79±0.58c 39.30±1.38a 3.08±0.24b 7.70 ±1.46b 78.42±9.01 25.86±0.59b 46.33±0.74a 3.43±0.59b 7.92±0.92c 注:植株的氮磷含量是指干重状态下的含量;各列字母表示统计分析上的显著性,相同字母表示不显著,不同字母表示在P=0.05水平上显著。 表 5 各植物修复系统植物同化比去除率
Table 5. Specific removal rates of plant assimilation by various phytoremediation systems
植物修复系统 比去除率/(mg·(kg·d)-1) TN TP 苦草 20.63 1.93 凤眼莲 23.03 1.92 苦草+凤眼莲 29.53* 2.46* 菖蒲 12.26** 0.68** 苦草+菖蒲 21.85 1.69 菖蒲+凤眼莲 16.23 1.19 苦草+菖蒲+凤眼莲 28.82* 2.42* 注:*表示P<0.05;**表示P<0.01。 -
[1] ZHAO F L, YANG W D, ZENG Z, et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water[J]. Biomass and Bioenergy, 2012, 42: 212-218. doi: 10.1016/j.biombioe.2012.04.003 [2] 韩永和, 李敏. 植物-微生物联合修复技术治理水体富营养化[J]. 水处理技术, 2012, 38(3): 1-6. doi: 10.3969/j.issn.1000-3770.2012.03.001 [3] ZHU L D, LI Z H, TARJA K. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area[J]. Ecological Engineering, 2011, 37(10): 1460-1466. doi: 10.1016/j.ecoleng.2011.03.010 [4] GUPTA P, ROY S, MAHINDRAKAR A B. Treatment of water using water hyacinth, water lettuce and vetiver grass: A review[J]. Resources & Environment, 2012, 2(5): 202-215. [5] XU X G, ZHOU Y W, HAN R M, et al. Eutrophication triggers the shift of nutrient absorption pathway of submerged macrophytes: Implications for the phytoremediation of eutrophic waters[J]. Journal of Environmental Management, 2019, 239: 376-384. doi: 10.1016/j.jenvman.2019.03.069 [6] TING W H T, TAN I A W, SAIIEH S F, et al. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review[J]. Journal of Water Process Engineering, 2018, 22: 239-249. doi: 10.1016/j.jwpe.2018.02.011 [7] LU B, XU Z S, LI J G, et al. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers[J]. Ecological Engineering, 2018, 110: 18-26. doi: 10.1016/j.ecoleng.2017.09.016 [8] WANG C, ZHENG S S, WANG P F, et al. Effects of vegetations on the removal of contaminants in aquatic environments: A review[J]. Journal of Hydrodynamics, 2014, 26: 497-511. doi: 10.1016/S1001-6058(14)60057-3 [9] 张贵龙, 赵建宁, 刘红梅, 等. 不同水生植物对富营养化水体无机氮吸收动力学特征[J]. 湖泊科学, 2013, 25(2): 221-226. doi: 10.3969/j.issn.1003-5427.2013.02.007 [10] 李琳, 岳春雷, 张华, 等. 不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学, 2019, 40(11): 4962-4970. [11] 赵梦云, 熊家晴, 郑于聪, 等. 植物收割对人工湿地中污染物去除的长期影响[J]. 水处理技术, 2019, 45(11): 112-116. [12] YANG L H, EDWARDS K F, BYRNES J E, et al. A meta-analysis of resource pulse-consumer interactions[J]. Ecological Monographs, 2010, 80(1): 125-151. doi: 10.1890/08-1996.1 [13] BARYA M P, GUPTA D, THAKUR T K, et al. Phytoremediation performance of Acorus calamus and Canna indica for the treatment of primary treated domestic sewage through vertical subsurface flow constructed wetlands: A field-scale study[J]. Water Practice and Technology, 2020, 15(2): 528-539. doi: 10.2166/wpt.2020.042 [14] QIN H J, ZHANG Z Y, LIU M H, et al. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce[J]. Ecological Engineering, 2016, 95: 753-762. doi: 10.1016/j.ecoleng.2016.07.022 [15] EPSTEIN E, HAGEN C E. A kinetic study of the absorption of alkaline cations by barley roots[J]. Plant Physiology, 1952, 27(3): 457-474. doi: 10.1104/pp.27.3.457 [16] 张熙灵, 王立新, 刘华民, 等. 芦苇、香蒲和藨草3种挺水植物的养分吸收动力学[J]. 生态学报, 2014, 34(9): 2238-2245. [17] WU Q, HU Y, LI S Q, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211: 451-456. doi: 10.1016/j.biortech.2016.03.113 [18] GAO H L, QIAN X, WU H F, et al. Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body: A case study of Gonghu Bay, Lake Taihu[J]. Ecological Engineering, 2017, 102: 15-23. doi: 10.1016/j.ecoleng.2017.01.013 [19] 谢静, 吕锡武, 李洁. 6种湿地植物吸收污水中氮和磷的动力学[J]. 环境工程学报, 2016, 10(8): 4067-4072. doi: 10.12030/j.cjee.201503043 [20] LI J H, YANG X Y, WANG Z F, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 2015, 179: 1-7. doi: 10.1016/j.biortech.2014.11.053 [21] HOAGLAND D R, ARNON D I. The water culture methods for growing plants without soil[J]. Circular California Agricultural Experiment Station, 1950, 347: 357-359. [22] 蒋廷惠, 郑绍建, 石锦芹, 等. 植物吸收养分动力学研究中的几个问题[J]. 植物营养与肥料学报, 1995(2): 11-17. doi: 10.11674/zwyf.1995.0202 [23] 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49. doi: 10.3969/j.issn.1002-6002.2002.05.018 [24] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [25] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [26] ZHANG Z H, RENGEL Z, MENEY K. Kinetics of ammonium, nitrate and phosphorus uptake by Canna indica and Schoenoplectus validus[J]. Aquatic Botany, 2009, 91: 71-74. doi: 10.1016/j.aquabot.2009.02.002 [27] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161. [28] 王宇通, 邵新庆, 黄欣颖, 等. 植物根系氮吸收过程的研究进展[J]. 草业科学, 2010, 27(7): 105-111. doi: 10.3969/j.issn.1001-0629.2010.07.020 [29] 孙向辉, 李力. 水体富营养化及其植物修复技术研究进展[J]. 安徽农业科学, 2014, 42(18): 5902-5905. doi: 10.3969/j.issn.0517-6611.2014.18.071 [30] 王沛芳, 王超, 王晓蓉, 等. 苦草对不同浓度氮净化效果及其形态转化规律[J]. 环境科学, 2008, 29(4): 890-895. doi: 10.3321/j.issn:0250-3301.2008.04.008 [31] LIU J K, LIU J L, ZHANG R, et al. Impacts of aquatic macrophytes configuration modes on water quality[J]. Water Science and Technology: A journal of the International Association on Water Pollution Research, 2014, 69(2): 253-261. doi: 10.2166/wst.2013.573 [32] 常素云, 赵静静, 刘小川, 等. 挺水植物与沉水植物组配对北大港水库水质的影响[J]. 水资源保护, 2014, 30(5): 38-43.