-
SO2、NOx会污染环境、造成酸雨、破坏臭氧[1-2]。2016年,我国发布《“十三五”生态环境保护规划》,提出了对SO2、NOx减排15%的要求。除了工业节能减排,开发及改进现有脱硫脱硝技术同样重要。目前,工业领域主流SO2、NOx净化技术为湿法脱硫和选择性催化还原法(selective catalytic reduction,SCR)[3-4]。这2种技术成本较高且易产生二次污染[5],而生物处理法因其成本低、操作简单、二次污染小等优势逐渐受到关注。
生物转鼓是一种处理废气污染物的新型生物反应器,可有效规避生物过滤和生物滴滤等传统废气生物处理工艺中填料易堵塞、污染物分布不均匀、气液传质差等问题。生物转鼓可在厌氧条件下去除SO2和NO,但需额外添加络合剂FeII(EDTA)以促进NO的传质效果[6-7]。有研究表明,在生物滴滤塔同步净化SO2和NOx时,充以O2可提高NOx的去除率[8-9]。但该方法还未应用于生物转鼓中。
为优化生物转鼓脱硫脱硝工艺性能,本研究在自制模拟装置中,探究好氧条件下生物转鼓的挂膜启动过程、生物相群落组成,考察不同进气质量浓度下生物转鼓对NOx、SO2的净化效果和去除负荷,并探讨了生物转鼓好氧同步脱硫脱硝过程中N和S的转化途径,以期为生物转鼓的好氧工艺优化提供参考。
生物转鼓工艺好氧同步处理工业废气中的SO2和NOx
Simultaneous treatment of SO 2 and NO x in industrial waste gas by aerobic rotating drum biofilter
-
摘要: 为提升基于脱硫脱硝工艺的生物转鼓对工业废气中SO2、NOx的处理效果,在好氧条件下,分析了生物转鼓的启动过程、稳态下的生物相群落结构,考察了不同进气质量浓度下生物转鼓对SO2、NOx的处理效果和去除负荷,并探讨了生物转鼓同步脱硫脱硝过程中N和S的转化途径。结果表明:生物转鼓的启动挂膜需耗时约25 d;门水平的脱硫脱硝优势菌为变形菌门、拟杆菌门和绿弯菌门,这些菌总占比58%。在NOx进气质量浓度低于800 mg·m−3、SO2进气质量浓度低于2 850 mg·m−3时,生物转鼓的同步脱硫脱硝效率高于90%;而当NOx和SO2进气质量浓度较高时,N和S会以NO3−和SO42−的形式富集在液相中。当NOx进气质量浓度为1 000 mg·m−3、SO2进气质量浓度为1 200 mg·m−3时,NO3−和SO42−可维持平衡。此时,生物转鼓达到最大N、S去除负荷,即最大NOx-N去除负荷为11.81 mg·(L·h)−1、最大SO2-S去除负荷为28.41 mg·(L·h)−1。本研究可为生物转鼓好氧同步脱硫脱硝工艺的优化提供参考。Abstract: In order to improve the treatment effect of rotating drum biofilter based on desulfurization and denitrification process on SO2 and NOx in industrial waste gas, the start-up process of rotating drum biofilter and the biophase community structure in the steady state were analyzed under aerobic conditions. The treatment effect and removal load of rotating drum biofilter on SO2 and NOx under different inlet mass concentrations were also investigated. The transformation of N and S in the synchronous desulfurization and denitrification process of the rotating drum biofilter was also discussed. The results showed that it took about 25 days to start and hang the membrance of the bio-drum. The dominant bacteria of desulfurization and denitrification at the phylum level were Proteobacteria, Bacteroidetes and Chloroflexi, which accounted for 58% in total. When the mass concentration of NOx was lower than 800 mg·m−3 and the mass concentration of SO2 was lower than 2 850 mg·m−3, the simultaneous desulfurization and denitrification efficiency of the rotating drum biofilter was higher than 90%. However, when the mass concentration of SO2 and NOx was high, N and S would be enriched in the liquid phase in the form of NO3− and SO42−. When the inlet mass concentration of NOx was 1 000 mg·m−3, and the inlet mass concentration of SO2 was 1 200 mg·m−3, NO3− and SO42− in the liquid phase maintained a balance. At this point, the rotating drum biofilter realized the maximum removal loads of N and S, with the maximum NOx-N removal load of 11.81 mg·(L·h)−1, and the maximum SO2-S removal load of 28.41 mg·(L·h)−1. This study can provide reference for the optimization of bio-drum aerobic synchronous desulfurization and denitrification process.
-
表 1 生物转鼓内气、液相中的N含量平衡
Table 1. Balance of N content in gas and liquid phase in rotating drum biofilter
进气质量浓度/
(mg·m−3)M1(气相NOx−N)/g M2(液相NO3−−N)/g M3(生物净化)/g △N/g MI/
(M2+M3)进 出 合计 进气前 进气后 合计 1 000 6.33 1.27 5.06 2.88 2.93 0.05 4.561) 0.45 1.09 800 5.07 0.50 4.57 2.93 2.50 −0.43 4.56 0.44 1.11 600 3.86 0.32 3.54 2.50 1.04 −1.46 4.56 0.44 1.14 注:1)NO3−−N生物净化量按挂膜期间NO3−−N的去除负荷计算。 表 2 生物转鼓内气相、液相中的S含量平衡
Table 2. Balance of S content in gas and liquid phase in rotating drum biofilter
进气质量浓度/
(mg·m−3)M1(气相SO2−S)/g M2(液相SO42-−S)/g M3(生物净化)/g △S /g MI/
(M2+M3)进 出 合计 进气前 进气后 合计 1 400 16.73 0.94 15.79 4.64 6.87 2.23 13.55 0.01 1.00 1 200 14.34 0.65 13.69 6.87 6.89 0.02 13.55 0.12 1.01 1 000 11.83 0.49 11.34 6.89 4.60 −2.29 13.55 0.08 1.01 注:2)SO42-−S生物净化量按挂膜期间SO42-−S的去除负荷计算。 -
[1] BRIMBLECOMBE P, STEDMAN D H. Historical evidence for a dramatic increase in the nitrate component of acid-rain[J]. Nature, 1983, 303(5912): 88. doi: 10.1038/303088a0 [2] NIU Y, LI X, HUANG Z, et al. Chemical characteristics and possible causes of acid rain at a regional atmospheric background site in eastern China[J]. Air Quality Atmosphere & Health, 2017, 10(4): 1-10. [3] 颜金培, 杨林军, 鲍静静. 湿法脱硫烟气中细颗粒物的变化特性[J]. 东南大学学报, 2011, 41(02): 387-392. [4] 邹斯诣. 选择性催化还原(SCR)脱硝技术应用问题及对策[J]. 节能技术, 2009, 27(6): 510-512. doi: 10.3969/j.issn.1002-6339.2009.06.008 [5] 王文兴, 柴发合, 任阵海, 等. 新中国成立70年来我国大气污染防治历程、成就与经验[J]. 环境科学研究, 2019, 32(10): 1621-1635. [6] CHEN J, GU S Y, ZHENG J, et al. Simultaneous removal of SO2 and NO in a rotating drum biofilter coupled with complexing absorption by FeII(EDTA)[J]. Biochemical Engineering Journal, 2016, 114(10): 87-93. [7] 杨宣, 陈浚, 朱滨欢, 等. 多层填料生物转鼓去除NO废气的效能比较研究[J]. 环境科学学报, 2013, 33(1): 224-229. [8] WANG X C, BI X Y, SUN P S, et al. Effects of oxygen content on the simultaneous microbial removal of SO2 and NOx in biotrickling towers[J]. Biotechnology and Bioprocess Engineering, 2015, 20(5): 924-930. doi: 10.1007/s12257-015-0138-5 [9] SUN C C, YUAN J Q, XU H, et al. Simultaneous removal of nitric oxide and sulfur dioxide in a biofilter under micro-oxygen thermophilic conditions: Removal performance, competitive relationship and bacterial community structure[J]. Bioresource Technology, 2019, 290: 1-8. [10] 张丽平, 裴星媛, 赵春蓉. 盐酸萘乙二胺分光光度法测定环境空气中氮氧化物含量的不确定评定[J]. 环境科学导刊, 2020, 39(1): 91-96. [11] 孙艳平, 夏周洁, 包晓云. 甲醛吸收-副玫瑰苯胺分光光度法测定水中二氧化硫的测量不确定度评定[J]. 环境与生活, 2014(6): 57-58. [12] 李恩超. 焦化纳滤浓水的生物脱氮及其微生物菌群结构分析[J]. 环境工程学报, 2019, 13(10): 2461-2467. doi: 10.12030/j.cjee.201811113 [13] 鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801-1820. [14] WANG A J, DU D Z, REN N Q, et al. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans.[J]. Journal of Environmentalence & Health. Part A Toxic/hazardous Substances & Environmental Engineering, 2005, 40(10): 1939-1949. doi: 10.1080/10934520500184590 [15] LI Y T, WANG Y R, FU L, et al. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1-5[J]. Bioresource Technology, 2017, 230: 103-111. doi: 10.1016/j.biortech.2017.01.049 [16] PAN Y T, NI B J, YUAN Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification[J]. Environmental Science & Technology, 2013, 47(19): 11083-11091. [17] YAN L, ZHAO H. Advances in enzyme properties and applications of sulfate-reducing bacteria[J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 13-19. [18] MOGENSEN G L, KJELDSEN K U, INGVORSEN K. Desulfovibrio aerotolerans sp. nov., an oxygen tolerantsulphate reducing bacterium isolated from activatedsludge[J]. Anaerobe, 2005, 11(6): 339-349. doi: 10.1016/j.anaerobe.2005.04.002 [19] SALEHI S, CHENG K Y, HEITZ A, et al. Simultaneous nitrification, denitrification and phosphorus recovery (SNDPr)-An opportunity to facilitate full-scale recovery of phosphorus from municipal wastewater[J]. Journal of Environmental Management, 2019, 238: 41-48.