-
城镇污水处理厂生化尾水深度净化脱氮常采用异养反硝化工艺,安全廉价的碳源是该工艺高效运行的关键。与常用液态碳源相比,可生物降解型人工合成聚合物固体碳源因运输安全、释碳稳定而成为反硝化脱氮领域的研究热点。聚乳酸(Polylactic acid PLA)、3-羟基丁酸/戊酸酯共聚物(Polyhydroxy-butyrate-co-valerate PHBV)[1]、聚己内酯(Poly(ε-caprolactone) PCL)[2]和聚丁二酸丁二醇酯(Poly(Butylene Succinate) PBS)[3]等聚合物具有良好释碳性能。但PHBV,PCL和PBS等聚合物在合成过程中存在聚合条件苛刻、催化剂毒性高等问题[4-5],存在安全隐患。PLA能够由乳酸直接缩聚而成,合成方法简单、价格低廉,被认为是最具有发展潜力的可生物降解聚合物[6-7]。
目前,关于PLA作为固体碳源进行反硝化脱氮的研究多以工程应用为主。FAN等[8]研究了PLA反硝化脱氮的污泥培养时间(35 d)与适宜温度(30~40 ℃)。彭书林等[9]优化了PLA反硝化系统的适宜进水pH范围为7.8~10.1。TAKAHASHI等[10]从PLA水解产物角度判断了不同分子量PLA的脱氮效果,指出低分子量PLA脱氮效果更好。但是不同分子量PLA的脱氮路径及相应机制尚不清晰,这是异养微生物脱氮过程高效调控的理论基础。
本研究选取分子量为5 000 g·mol−1,10 000 g·mol−1和50 000 g·mol−1的PLA,在探究其释碳性能和反硝化效果的基础上,通过分析出水溶解性有机质(DOM)组分及微生物群落结构,揭示不同分子量PLA反硝化脱氮路径与机制,以期为PLA应用于低碳脱氮提供参考。
不同分子量聚乳酸的异养反硝化脱氮性能及脱氮反应机制
Heterotrophic denitrification and denitrification mechanism of polylactic acid with different molecular weight
-
摘要: 聚乳酸(PLA)是一种发展潜力巨大的反硝化固体碳源。为探究不同分子量PLA反硝化脱氮路径及机制,以不同分子量PLA为固体碳源研究了PLA的静态释碳性能和反硝化脱氮效果,考察了反硝化出水溶解性有机质(DOM)组分和微生物群落结构。结果表明:PLA释碳稳定,在清水和脱氮反应器中出水COD均能稳定在20 mg·L−1;PLA分子量越低,脱氮效果越好,5 000 g·mol−1分子量PLA的NO3−-N去除率和反硝化速率达到100%和1.29 mg·L−1·h−1。PLA脱氮路径有2条:一是反硝化功能菌群利用水解微生物分解PLA释放的小分子碳源作为电子供体进行异养反硝化作用;一是微生物利用溶解性微生物代谢产物等有机物进行反硝化脱氮。该研究结果可为PLA固体碳源在反硝化脱氮工艺中的高效应用提供参考。Abstract: Polylactic acid (PLA) is a kind of denitrification solid carbon source with great potential. In order to explore the denitrification pathway and mechanism of PLA with different molecular weights, the static carbon release performance and denitrification efficiency of PLA with different molecular weights were studied, and the effluent of dissolved organic matter (DOM) components and the microbial community structure were analyzed. The results showed that PLA carbon release performance was stable, and the effluent COD concentration in both deionized water and nitrogen removal reactors could be stabilized at 20 mg·L−1. The lower the molecular weight of PLA was, the better the nitrogen removal efficiency was. The NO3−-N removal rate and denitrification rate of 5 000 g·mol−1 molecular weight PLA reached 100% and 1.29 mg·L−1·h−1. There were two pathway for PLA denitrification, one was that denitrifying bacteria used the small molecule weight carbon source released by hydrolyzed microorganisms PLA as electron donor for heterotrophic denitrification,the other one was that microorganisms used organic matter such as dissolved microbial metabolites for denitrification. The research results can provide a theoretical basis for the efficient application of PLA as solid carbon source in denitrification process.
-
表 1 微量元素溶液成分组成
Table 1. Composition of trace element solution
成分 质量浓度/(g·L−1) 成分 质量浓度/(g·L−1) ZnSO4·7H2O 2.2 CuSO4·5H2O 1.6 CoCl2·6H2O 1.6 MgSO4·7H2O 5.0 FeSO4·7H2O 5.0 (NH4)6Mo7O24·4H2O 1.1 CaCl2·2H2O 5.5 NiSO4·6H2O 0.42 MnCl2·4H2O 5.0 EDTA 5.0 表 2 微生物群落α多样性指数
Table 2. α diversity index of microbial community
样品编号 序列数目 OTUs Shannon指数 Chao指数 coverage S1 43 896 1 205 5.50 1 375.29 0.99 S2 36 628 1 273 5.47 1 402.56 0.99 S3 40 559 1 172 5.41 1 298.73 0.99 注:5 000 g·mol−1分子量PLA反应器37 d污泥样品S1;10 000 g·mol−1分子量PLA反应器37 d污泥样品S2;50 000 g·mol−1分子量PLA反应器37 d污泥样品S3。 -
[1] XU Z S, CHAI X L. Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification[J]. International Biodeterioration & Biodegradation, 2017, 116: 175-183. [2] JIANG L, WU A Q, FANG D X, et al. Denitrification performance and microbial diversity using starch-polycaprolactone blends as external solid carbon source and biofilm carriers for advanced treatment[J]. Cheosphere, 2020, 255: 126901. doi: 10.1016/j.chemosphere.2020.126901 [3] 芦婷, 杨璐华, 杨飞飞, 等. 高效反硝化菌强化固相碳源生物脱氮特性研究[J]. 北京大学学报(自然科学版), 2017, 53(5): 957-963. doi: 10.13209/j.0479-8023.2017.114 [4] 陕洁, 牟芬, 王新芳, 等. 可生物降解塑料的合成及其改性[J]. 聚酯工业, 2021, 34(3): 23-26. doi: 10.3969/j.issn.1008-8261.2021.03.006 [5] 李静, 刘景江. 聚(β-羟基丁酸酯)和β-羟基丁酸酯-β-羟基戊酸酯共聚物与可生物降解高分子共混改性研究进展[J]. 高分子通报, 2003(6): 33-43. doi: 10.3969/j.issn.1003-3726.2003.06.006 [6] 林世东, 杜国强, 顾君, 等. 我国生物基及可降解塑料发展研究[J]. 塑料工业, 2021, 49(3): 10-12+37. doi: 10.3969/j.issn.1005-5770.2021.03.002 [7] PANG X, ZHUANG X L, TANG Z H, et al. Polylactic acid (PLA): research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1125-1136. doi: 10.1002/biot.201000135 [8] FAN Z X, HU J, WANG J L. Biological nitrate removal using wheat straw and PLA as substrate[J]. Environmental Technology, 2012, 33(21): 2369-2374. doi: 10.1080/09593330.2012.669411 [9] 彭书林, 赵丹. 进水pH值对PLA反硝化系统的影响[J]. 塑料工业, 2021, 49(10): 158-162. doi: 10.3969/j.issn.1005-5770.2021.10.033 [10] TAKAHASHI M, YAMADA T, TANNO M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (l-lactic acid) as the solid substrate[J]. Microbes and Environments, 2011, 26(3): 212-219. doi: 10.1264/jsme2.ME11107 [11] 许明奕, 逄宇帆, 刑涛等. 聚乳酸合成方法的研究进展及市场分析[J]. 应用化工, 2022, 51(12): 3614-3618+3624. doi: 10.3969/j.issn.1671-3206.2022.12.038 [12] 夏璐, 黄鹏, 刘丹丹等. 磷钨杂多酸直接法催化合成聚乳酸[J]. 当代化工, 2010, 39(06): 628-631. doi: 10.3969/j.issn.1671-0460.2010.06.005 [13] 刘斌基. 聚乳酸的合成过程的影响因素[J]. 新疆有色金属, 2015, 38(06): 49-51. doi: 10.16206/j.cnki.65-1136/tg.2015.06.018 [14] 杨惠兰, 张丹, 兰书焕, 等. 聚己内酯复合固体碳源的制备及其深度脱氮性能研究[J]. 环境科学学报, 2022, 42(05): 263-273. doi: 10.13671/j.hjkxxb.2021.0415 [15] GAO L J, HAN F, ZHANG X W, et al. Simultaneous nitrate and dissolved organic matter removal from wastewater treatment plant effluent in a solid-phase denitrification biofilm reactor[J]. Bioresource Technology, 2020, 314: 123714. doi: 10.1016/j.biortech.2020.123714 [16] 姚璐璐, 涂响, 于会彬等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(02): 411-416. [17] 陈思. 生物脱氮固体碳源筛选及初步脱氮效果[D]. 重庆: 重庆大学, 2013. [18] 汪鲁, 刘军, 李永富, 等. 基于固态碳源的同步硝化反硝化反应器对海水养殖废水中氮的去除性能[J]. 环境工程学报, 2022, 16(6): 2001-2009. doi: 10.12030/j.cjee.202112196 [19] YANG M, WANG X N, LIU S, et al. Carbon release behaviour of polylactic acid/starch-based solid carbon and its influence on biodenitrification[J]. Biochemical Engineering Journal, 2020, 155. [20] 王玥, 秦帆, 唐燕华, 等. 农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报, 2019, 4(5): 146-151. [21] 孙策, 吕闪闪, 张化腾等. 聚乳酸及其复合材料降解的研究进展[J]. 塑料, 2018, 47(6): 114-117. [22] 任永琳, 王达, 刘合等. 聚乳酸水解机理及水解性能改进方法研究进展[J]. 石油化工, 2022, 51(09): 1129-1136. doi: 10.3969/j.issn.1000-8144.2022.09.018 [23] 焦旗, 田广华, 杨坚, 等. 聚丙烯结晶性能研究[J]. 工程塑料应用, 2015, 43(7): 109-113. doi: 10.3969/j.issn.1001-3539.2015.07.024 [24] 樊新, 陈剑, 阮建明, 等. 聚乳酸类生物可降解材料研究进展[J]. 粉末冶金材料科学与工程, 2008(4): 187-194. doi: 10.3969/j.issn.1673-0224.2008.04.001 [25] 梁捷, 缪恒锋, 任洪艳, 等. 以聚己内酯作为生物反硝化固体碳源的研究[J]. 环境工程学报, 2015, 9(2): 633-638. doi: 10.12030/j.cjee.20150221 [26] SHEN Z Q, ZHOU Y X, WANG J L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal[J]. Bioresource Technology, 2013, 131: 33-39. doi: 10.1016/j.biortech.2012.12.169 [27] VAN DEN BERG E M, BOLEIJ M, KUENEN J G, et al. DNRA and denitrification coexist over a broad range of acetate/N-NO(3)(-) ratios, in a chemostat enrichment culture[J]. Frontiers in Microbiology, 2016, 7: 1842. [28] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839. [29] YANG Z C, SUN H M, ZHOU Q, et al. Nitrogen removal performance in pilot-scale solid-phase denitrification systems using novel biodegradable blends for treatment of waste water treatment plants effluent[J]. Bioresource Technology, 2020, 305: 122994. doi: 10.1016/j.biortech.2020.122994 [30] LI J, TABASSUM S. Remediation of nitrate-contaminated groundwater by a combined treatment method of novel Mass Bio System and solid organic carbon sources: In-depth study[J]. Cleaner Engineering and Technology, 2021, 4. [31] WU L N, ZHANG L Y, XU Y Y, et al. Advanced nitrogen removal using bio-refractory organics as carbon source for biological treatment of landfill leachate[J]. Separation and Purification Technology, 2016, 170: 306-313. doi: 10.1016/j.seppur.2016.06.033 [32] 万鹏亮, 刘玉玲, 朱妮平, 等. A2O工艺处理城市污水过程中DOM组分变化分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(5): 765-772. doi: 10.15986/j.1006-7930.2021.05.020 [33] CHEN D, WANG H Y, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017 [34] ZHAO J M, FENG C P, TONG S, et al. Denitrification behavior and microbial community spatial distribution inside woodchip-based solid-phase denitrification (W-SPD) bioreactor for nitrate-contaminated water treatment[J]. Bioresource Technology, 2018, 249: 869-879. doi: 10.1016/j.biortech.2017.11.011 [35] MIURA Y, WATANABE Y, OKABE S, et al. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41: 7787-7794. [36] FUJII N, KURODA K, NARIHIRO T, et al. Metabolic potential of the superphylum Patescibacteria reconstructed from activated sludge samples from a municipal wastewater treatment plant[J]. Microbes and Environments, 2022, 37 (3). [37] YE L, SHAO M F, ZHANG T, et al. Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing[J]. Water Research, 2011, 45(15): 4390-4398. doi: 10.1016/j.watres.2011.05.028 [38] VETROVSKY T, STEFFEN K T, BALDRIAN P. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria[J]. PLoS One, 2014, 9(2): 89108. doi: 10.1371/journal.pone.0089108 [39] 周星煜, 张金松. 活性污泥反硝化速率与功能基因活性关联分析[J/OL]. 给水排水: 1-7 2-11-24].
[40] KRISTENSEN J M, SINGLETON C, CLEGG L A, et al. High diversity and functional potential of undescribed "Acidobacteriota" in Danish wastewater treatment plants[J]. Frontiers in Microbiology, 2021, 12: 643950. doi: 10.3389/fmicb.2021.643950 [41] 肖晶晶, 郭萍, 霍炜洁, 等. 反硝化微生物在污水脱氮中的研究及应用进展[J]. 环境科学与技术, 2009, 32(12): 97-102. doi: 10.3969/j.issn.1003-6504.2009.12.022 [42] CAO J S, ZHANG T, WU Y, et al. Correlations of nitrogen removal and core functional genera in full-scale wastewater treatment plants: influences of different treatment processes and influent characteristics[J]. Bioresource Technology, 2020, 297: 122455. doi: 10.1016/j.biortech.2019.122455 [43] RISSANEN A J, OJALA A, FRED T, et al. Methylophilaceae and Hyphomicrobium as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants[J]. J Ind Microbiol Biotechnol, 2017, 44(1): 35-47. doi: 10.1007/s10295-016-1860-5 [44] WANG Z Y, ZHENG M, MENG J, et al. Robust nitritation sustained by acid-tolerant ammonia-oxidizing bacteria[J]. Environmental Science & Technology, 2021, 55(3): 2048-2056. [45] KONDROTAITE Z, VALK L C, PETRIGLIERI F, et al. Diversity and ecophysiology of the genus OLB8 and other abundant uncultured Saprospiraceae genera in global wastewater treatment systems[J]. Frontiers in Microbiology, 2022, 13: 917553. doi: 10.3389/fmicb.2022.917553 [46] ZHANG S Q, KONG Z, WANG H, et al. Enhanced nitrate removal by biochar supported nano zero-valent iron (nZVI) at biocathode in bioelectrochemical system (BES)[J]. Chemical Engineering Journal, 2022, 433. [47] SUN H M, ZHOU Q, ZHAO L, et al. Enhanced simultaneous removal of nitrate and phosphate using novel solid carbon source/zero-valent iron composite[J]. Journal of Cleaner Production, 2021, 289. [48] 张鹏程, 李晓玲, 王晓婷等. 活性污泥体系中C/N/S对硝酸盐还原过程的影响[J]. 中国环境科学, 2021, 41(5): 2117-2122. doi: 10.3969/j.issn.1000-6923.2021.05.015 [49] MARTINEAU C, MAUFFREY F, VILLEMUR R. Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii[J]. Applied and Environmental Microbiology, 2015, 81(15): 5003-5014. doi: 10.1128/AEM.00848-15 [50] ZHANG Y P, DOUGLAS G B, KAKSONEN A H, et al. Microbial reduction of nitrate in the presence of zero-valent iron[J]. Science of the Total Environment, 2019, 646: 1195-1203. doi: 10.1016/j.scitotenv.2018.07.112 [51] JIA L X, ZHOU Q, LI Y, et al. Integrated treatment of suburb diffuse pollution using large-scale multistage constructed wetlands based on novel solid carbon: nutrients removal and microbial interactions[J]. Journal of Environmental Management, 2023, 326: 116709. doi: 10.1016/j.jenvman.2022.116709 [52] LEVY-BOOTH D J, NAVAS L E, FETHEROLF M M, et al. Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing[J]. The ISME Journal, 2022, 16(8): 1944-1956. doi: 10.1038/s41396-022-01241-8 [53] SUOMINEN S, VAN VLIET D M, SANCHEZ-ANDREA I, et al. Organic matter type defines the composition of active microbial communities originating from anoxic baltic sea sediments[J]. Frontiers in Microbiology, 2021, 12: 628301. doi: 10.3389/fmicb.2021.628301 [54] ZHANG L, HAO S W, WANG Y P, et al. Rapid start-up strategy of partial denitrification and microbially driven mechanism of nitrite accumulation mediated by dissolved organic matter[J]. Bioresource Technology, 2021, 340: 125663. doi: 10.1016/j.biortech.2021.125663 [55] HUANG X, YAO K, YU J H, et al. Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe3+[J]. Bioresource Technology, 2022, 363: 127972. doi: 10.1016/j.biortech.2022.127972 [56] YIN Y N, HU Y M, WANG J L. Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids[J]. Bioresource Technology, 2022, 361: 127665. doi: 10.1016/j.biortech.2022.127665