-
由于国内污水处理排放标准日益严格,污水处理厂普遍面临氮磷达标的难题。目前,国内大部分采用的A2/O工艺及以其为基础的前置反硝化工艺自身脱氮效果受硝化液回流比限制,难以实现深度脱氮[1-3]。此外,我国的污水普遍存在碳源不足的特点,而脱氮除磷又存在碳源竞争,导致了氮磷不易达标[4-5]。目前,对于低C/N水质的污水,常采用投加碳源、增设反硝化滤池、分段进水A2/O工艺等[6-8]来提高脱氮效率;除磷方面,则通过投加大量化学除磷药剂来满足日趋严格的出水标准。但这些方法大都存在处理流程长、运行成本高、控制复杂等问题。因此,研发经济高效的脱氮除磷新工艺成为一大热点。
后置反硝化AOA (厌氧\好氧\缺氧) 工艺因可利用内碳源来反硝化,且工艺简单无需硝化液回流,而被广泛研究。WINKLER等[9]和许德超等[10]研究了后置缺氧序批式反应器 (SBR) 工艺,VOCKS等[11]研究了连续流后置缺氧膜生物反应器 (MBR) 工艺,ZHAO等[12]研究了连续流AOA工艺,均取得了良好的脱氮除磷效果。这些研究表明,原水中有机物在厌氧段和好氧段被微生物消耗储存,在缺氧段则利用胞内糖原或PHA 来反硝化脱氮。但相比外碳源反硝化,后置缺氧区的内源反硝化速率较低,所需缺氧区停留时间往往较长[12-13]。ZHANG等[14]和GAO等[15]报道了一种污泥双回流-AOA (SDR-AOA) 新工艺,该工艺通过设置二沉池到缺氧池的第二污泥回流,提高缺氧区污泥质量浓度,强化脱氮效果,在小试规模的实验中,该工艺处理低C/N污水,无需外加碳源,TN去除率可达90%以上。但是目前尚缺乏对该工艺中试以上放大规模的实验报道,且除磷效果如何也缺乏研究报道。本研究建立了处理规模100 m3·d−1的SDR-AOA中试系统,在大规模中试条件下对工艺的脱氮除磷性能重点考察,并对无第二污泥回流的AOA工艺和SDR-AOA工艺处理效果进行对比,分析SDR-AOA工艺设置第二污泥回流的优势,以期为该新工艺的推广应用提供参考。
污泥双回流-AOA中试系统处理低C/N城镇污水的脱氮除磷性能
Nitrogen and phosphorus removal performance on pilot-scale Sludge Double Recirculation-AOA system in treating low C/N municipal wastewater
-
摘要: 为解决低C/N污水脱氮除磷难题,建立了基于污泥双回流-AOA新工艺的中试系统来处理低C/N城镇污水,处理规模为100 m3·d−1,考察了系统对COD和氮磷的处理效果,并对比了无第二污泥回流时的AOA工艺处理效果,分析了设置第二污泥回流的优势。结果表明,污泥双回流-AOA工艺污水处理效果显著优于无第二污泥回流时的AOA工艺,COD、NH4+-N、TN、TP平均去除率分别达88.8%,96.3%,85.8%,94.1%。内源反硝化批次实验表明,内源脱氮负荷与污泥浓度呈正相关。设置第二污泥回流,提高了缺氧区MLSS,缺氧段比反硝化速率和内碳源转化率均提升,缺氧区脱氮负荷提高,促进系统TN去除率提高;系统第二污泥回流比100%时,缺氧区脱氮负荷为0.086 kgN·(m-3·d−1)。此外,设置第二污泥回流可有效避免系统在缺氧末和二沉池NH4+-N和TP质量浓度小幅回升。高通量测序结果表明,属于反硝化聚糖菌 (DGAOs) 的Candidatus_Competibacter为系统的优势菌属。本研究结果可为污泥双回流-AOA新工艺实现高效脱氮除磷提供参考。
-
关键词:
- 污泥双回流-AOA工艺 /
- 低C/N /
- 内源反硝化 /
- 脱氮除磷 /
- 反硝化除磷
Abstract: To address the challenging issue of nitrogen and phosphorus removal from low C/N sewage, a pilot system of the innovative Sludge Double Recirculation-AOA (SDR-AOA) process was established to treat low C/N municipal wastewater at a treatment scale of 100 m3·d−1. The study investigated the removal effect of COD, nitrogen, and phosphorus, and compared the treatment effect of the AOA process without the second sludge recirculation to analyze the advantages of setting up the second sludge recirculation in the SDR-AOA process. The results indicated that the SDR-AOA process was significantly more effective than the AOA process without the second sludge recirculation, with average removal rates of COD, NH4+-N, TN, and TP at 88.8%, 96.3%, 85.8%, and 94.1%, respectively. The experiment on endogenous denitrification rate demonstrated a positive correlation between the endogenous denitrification rate and the sludge concentration. The second sludge recirculation improved the MLSS in the anoxic zone, resulting in an increase in both the specific denitrification rate and intracellular carbon storage efficiency, which increased the nitrogen removal load of the anoxic zone to promote TN removal of the system. When the ratio of the second sludge recirculation was 100%, the nitrogen removal load of the anoxic zone was 0.086 kgN·(m-3·d−1). Additionally, the second sludge recirculation effectively prevented the slight rise of NH4+-N and TP mass concentration at the end of the anoxic zone and secondary sedimentation tank. High-throughput sequencing revealed that Candidatus_Competibacter, belonging to denitrifying glycogen accumulating organisms (DGAOs), was the dominant genus in the system. The results of this study can provide a reference for efficient nitrogen and phosphorus removal by a novel SDR-AOA process. -
表 1 进水水质特征
Table 1. Characteristics of influent quality
mg·L−1 检测项目 范围 平均值 COD 143~216 164.5 NH4+-N 20.01~28.68 24.53 TN 20.38~30.4 26.18 TP 2.14~4.52 3.05 表 2 中试运行条件
Table 2. Operational conditions of the pilot scale test
参数 phase1 phase2 时间/d 1~13 14~30 第一污泥回流比R1/% 100 100 第二污泥回流比R2/% 0 100 进水量Q/(m3·d−1) 100 100 HRT/h 10.8 10.8 好氧池末端DO/(mg·L−1) 2 2 好氧区MLSS/(mg·L−1) 4 707±768 4 787±446 温度/ ℃ 26~30 26~30 表 3 phase1和phase2缺氧段脱氮负荷、比反硝化速率、内碳源转化率和MLSS
Table 3. Nitrogen removal load, specific denitrification rate, intracellular carbon storage efficiency and MLSS
参数 phase1 (均值) phase2 (均值) 脱氮负荷/kgN·(m−3·d−1) 0.070±0.006 0.086±0.010 比反硝化速率/kgN·(kg−1VSS·d−1) 0.030±0.002 0.032±0.005 CODintra/% 90%±2% 94%±3% MLSS/mg·L−1 4707±798 5516±732 -
[1] 马宁, 汪浩, 刘操, 等. 污水厂提标改造中A2/O工艺研究与应用趋势[J]. 中国给水排水, 2016, 32(20): 29-33. [2] 孙永利, 李鹏峰, 隋克俭, 等. 内回流混合液DO对缺氧池脱氮的影响及控制方法[J]. 中国给水排水, 2015, 31(21): 81-84. [3] 韦琦, 罗方周, 徐相龙, 等. A2/O 工艺处理低温低碳氮比生活污水的脱氮效率及反应动力学[J]. 环境工程学报, 2021, 15(4): 1367-1376. doi: 10.12030/j.cjee.202010126 [4] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6): 12-15. [5] 邓玮玮, 王晓昌. 低碳氮比废水脱氮研究进展[J]. 工业水处理, 2015, 35(2): 15-18. [6] MOKHAYERI Y, NICHOLS A, MURTHY S, et al. Examining the influence of substrates and temperature on maximum specific growth rate of denitrifiers[J]. Water Science & Technology. 2006, 54(8): 155-162. [7] 王国亮, 刘劼, 孙红芳, 等. 西安市第十污水处理厂准IV类水提标改造方案的工艺比选及实施建议[J]. 环境工程学报, 2021, 15(10): 3428-3436. doi: 10.12030/j.cjee.202104208 [8] 朱云鹏, 彭永臻, 王继苗, 等. 改良A2/O分段进水工艺用于污水厂升级改造[J]. 中国给水排水, 2012, 28(7): 22-31,32-34. [9] WINKLER M, COATS E R, BRINKMAN C K. Advancing post-anoxic denitrification for biological nutrient removal[J]. Water Research, 2011, 45(18): 6119-6130. doi: 10.1016/j.watres.2011.09.006 [10] 许德超, 陈洪波, 李小明, 等. 静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究[J]. 环境科学学报, 2014, 34(1): 152-159. [11] VOCKS M, ADAMA C, LESJEAN B, et al. Enhanced post denitrification without addition of an external carbon source in membrane bioreactors[J]. Water Research, 2005, 39: 3360-3368. doi: 10.1016/j.watres.2005.05.049 [12] ZHAO W H, HUANG, Y, WANG M X, et al. Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater[J]. Chemical Engineering Journal 2018, 339: 450-458. [13] DING J, GAO X J, PENG Y, et al. Anaerobic duration optimization improves endogenous denitrification efficiency by glycogen accumulating organisms enhancement[J]. Bioresource Technology 2022, 348: 126730. [14] ZHANG T, WANG B, LI X Y, et al. Achieving partial nitrication in a continuous post-denitrifcation reactor treating low C/N sewage[J]. Chemical Engineering Journal, 2018, 335: 330-337. doi: 10.1016/j.cej.2017.09.188 [15] GAO X J, ZHANG T, WANG B, et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification[J]. Chemosphere, 2020, 252: 126624. doi: 10.1016/j.chemosphere.2020.126624 [16] CARUCCI A, CHIAVOLA A, MAJONE M, et al. Treatment of tannery wastewater in a sequencing batch reactor[J]. Water Science & Technology, 1999, 40(1): 253-259. [17] 付昆明, 廖敏辉, 任奕, 等. 污水短程硝化影响因素的对比分析[J]. 中国给水排水, 2019, 35(4): 24-29. doi: 10.19853/j.zgjsps.1000-4602.2019.04.006 [18] 刘爽, 袁林江, 王振. 污泥水解酸化过程中污染物的释出及其影响因素研究[J]. 环境工程学报, 2009, 3(7): 1316-1320. [19] 郝晓地, 朱景义, 曹亚莉, 等. 污水生物处理系统中内源过程的研究进展[J]. 环境科学学报, 2009, 29(2): 231-242. doi: 10.3321/j.issn:0253-2468.2009.02.002 [20] 王少坡, 彭永臻, 王淑莹, 等. 温度和污泥浓度对短程内源反硝化脱氮的影响[J]. 环境科学与技术, 2005, 28(4): 85-86. [21] SEVIOUR R J, MINO T, ONUKI M. The microbiology of biological phosphorus removal in activated sludge systems[J]. FEMS Microbiology Reviews, 2003, 27(1): 99-127. doi: 10.1016/S0168-6445(03)00021-4 [22] 毕东苏, 郭小品, 陆烽. 剩余污泥厌氧消化过程中的水解与生物释磷机制[J]. 环境科学学报, 2010, 30(12): 2445-2449. [23] LOPEZ C, PONS M N, MORGENROTH E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal[J]. Water Research, 2006, 40(8): 1519-1530. doi: 10.1016/j.watres.2006.01.040 [24] DU S M, YU D S, ZHAO J, et al. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor[J]. Bioresource Technology, 2019, 289: 121690. doi: 10.1016/j.biortech.2019.121690 [25] LIU R B, HAO X D, CHEN Q, et al. Research advances of Tetrasphaera in enhanced biological phosphorus removal: A review[J]. Water Research, 2019, 166: 115003. doi: 10.1016/j.watres.2019.115003 [26] Xu X C, Qiu L Y, Wang C, et al. Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial Nitrification, Anammox, Denitrification, and Denitrifying Phosphorus Removal (SNADPR) process in a single-tank integrative reactor[J]. Bioresource Technology, 2019, 284: 80-89. doi: 10.1016/j.biortech.2019.03.109 [27] 栾志翔, 吴迪, 韩文杰, 等. 北方某污水厂MBBR工艺升级改造后的高效脱氮除磷效果[J]. 环境工程学报, 2020, 14(2): 333-341. [28] QIU S J, LIU J J, ZHANG L, et al. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Frontiers of Environmental Science & Engineering, 2020, 15(2): 6457-6467. [29] 王清华, 赵亚琦, 黄磊, 等. 间歇曝气生物炭湿地中污染物的去除特征及微生物种群结构[J]. 环境工程学报, 2021, 15(6): 2118-2125. doi: 10.12030/j.cjee.202101043