-
近年来,由于药品和个人护理产品已成为一种新兴污染物,对人类健康和生态系统存在巨大潜在危害,越来越多的人开始关注此问题[1]。在其中,抗生素因其优良的抗细菌感染特性而被广泛应用于临床医疗。据世界卫生组织调查,我国抗生素人均消耗量是英国和北欧等大部分地区的近6倍[2]。由于人体无法完全代谢和吸收,消耗的大部分抗生素被大量排放至水体环境中。抗生素的滥用不仅会对环境造成污染,而且会促使细菌群体产生抗性导致“超级细菌”的产生[3]。氯霉素作为第一种人工全合成的抗生素类药品,由于对革兰氏阳性菌的作用性较强,曾经被广泛用于各种敏感菌感染的治疗。然而,氯霉素被人体摄入后,有30%~90%的氯霉素被随尿液或粪便排出体外,进入城市污水处理厂[4]。随着使用量的不断增加,氯霉素在土壤、地表水和地下水中均被检测到,甚至在动物体内也含有一定浓度的氯霉素[5]。有研究表明,氯霉素会对人体的消化系统和神经系统产生严重的毒副作用,过量的情况下可引发障碍性贫血和骨髓抑制等致命性疾病[6]。传统污水处理工艺很难将氯霉素完全降解,其中的氯化消毒过程中氯霉素的残留会导致具有“三致”效应消毒副产物的生成,其毒性远远超过母体物质,严重影响饮用水安全[7]。故而寻找一种稳定高效的氯霉素去除方法迫在眉睫。
高级氧化工艺在难降解有机污染物降解方面显示出明显的优势[8-9]。其中,电化学氧化工艺是一种极具吸引力的高级氧化工艺技术,其拥有环境友好、操作简单、可靠性高、适应性广等诸多优点,在新兴污染物如药品和个人护理产品的去除方面展示了优异的性能[10]。电化学氧化技术主要依靠阳极直接或间接氧化污染物的原理进行反应,因此,阳极的选择成为该技术的关键。不同的阳极材料将导致氧化反应的产物、机理以及电流效率的差异[11]。亚氧化钛电极由于具有较高的析氧电位(oxygen evolution potential, OEP)、良好的导电能力、电化学活性以及稳定性等特点,成为了近年来研究较多的电化学阳极材料[12-13]。有研究表明,以Ti4O7为阳极的电化学氧化工艺能够有效地降解氯霉素[14]。相比传统不具备活性的阳极材料(BDD、掺杂SnO2和PbO2等),Ti4O7阳极材料兼具原料储量丰富、低成本和易于制备的优点。尽管如此,原始的Ti4O7具有较低的界面电荷转移率,这将导致其无法提供足够的羟基自由基(·OH)[15-17]。因此,开发一种基于界面改性策略的新型Ti4O7阳极以提高其电催化活性是必要的。
目前,Ti4O7电极主要分为涂层电极和一体式电极。Ti4O7涂层电极主要通过在基体上沉积或是涂覆Ti4O7涂层而制得;Ti4O7一体式电极主要是通过Ti4O7粉末压制后再烧结成型而制备[18]。包括大部分对Ti4O7电极改性的研究也是基于此2种制备方式进行探索。Ti4O7电极较为成功的改性包括WANG等[19]采用等离子喷涂法,将熔化的Ti4O7粉末喷涂在钛板表面制备了Ti/Ti4O7电极,其具有较高的析氧电位,显示出良好的氧化降解能力;NAYAK等[20]在0.5 g Ti4O7粉末中加入2%~3%的石蜡油黏结剂,制备了整体电极,该电极对邻苯二甲酸和对苯二甲酸具有较高的去除率。这些制备Ti4O7电极及改性的方法虽能很好的提高Ti4O7电极的电催化能力,但存在制备方法复杂,稳定性较差的缺点。因此,需要寻找一种可以解决这些问题的改性策略,使得制备工艺简便,得到的电极稳定性优异的同时还可以提高Ti4O7电极电催化能力。
氯霉素通常在污水厂中的检测质量浓度级别为ng·L−1或μg·L−1[21],但在实验室中,为了凸显电催化性能的降解能力,通常选用mg·L−1的质量浓度作为模拟氯霉素废水,如杨志伟等[22]用超声强化Ti4O7电极,在最佳反应条件下,对初始质量浓度为20 mg·L−1的氯霉素去除率为82.11%。本研究选用20 mg·L−1的氯霉素模拟废水作为目标污染物,采用缺陷工程方法制备Zr、钇(yttrium, Y)和锰(manganese, Mn)不同过渡金属元素掺杂的Ti4O7电极,探讨这些改性Ti4O7电极对于氯霉素的去除效能,重点比较Zr/Ti4O7阳极和纯Ti4O7阳极对氯霉素的电化学降解性能,通过微观结构、元素分析和电化学测试等对Zr元素掺杂亚氧化钛(Zr/Ti4O7)阳极的电极性能进行表征并通过循环实验测试了Zr/Ti4O7阳极的稳定性。重点优化研究初始电流密度、初始pH,常见阴离子等因素影响下Zr/Ti4O7阳极对氯霉素的降解并分析氯霉素的降解机理,此外,还将进一步探究Zr/Ti4O7作为阳极的电化学氧化工艺对不同抗生素的降解能力,以期为改性Zr/Ti4O7电极对氯霉素的降解提供参考。
改性Ti4O7阳极对氯霉素的高效电氧化降解
Highly efficient electrooxidation degradation of chloramphenicol by modified Ti4O7 anode
-
摘要: 针对传统电化学氧化中阳极是污染物催化氧化的核心,寻找一种具有高析氧电位,高反应活性面积,优良催化活性的阳极是当下亟待解决的问题。为此,选取了亚氧化钛(Ti4O7)电极作为基础电极且对其进行过渡金属元素掺杂改性。通过各种表征及降解性能研究发现,所制备改性电极相对于纯Ti4O7电极催化性能有所提高。其中,锆(zirconium, Zr)元素掺杂后使得改性电极具有更高的析氧电位和更好的电催化活性。在电流密度为30 mA·cm−2,初始pH为6.1,电解质为100 mmol·L−1 Na2SO4和10 mmol·L−1 NaCl的最优条件下,氯霉素的去除率为97.4%。并且该电极具有很好的抗干扰性和稳定性,在不同pH干扰下对氯霉素依然具有较高的降解率(均高于81.1%)。此外,Zr元素掺杂的Ti4O7改性电极对氟苯尼考和双氯芬酸钠等药物也具有很好的降解效果,降解率分别为93.4%和85.5%,本研究结果可为电化学去除污染物阳极改性研究提供参考。
-
关键词:
- 电化学氧化 /
- Zr/Ti4O7阳极 /
- 掺杂 /
- 氧空位 /
- 氯霉素
Abstract: Considering that anode is the core of catalytic oxidation of pollutants in traditional electrochemical oxidation, it is urgent to find an anode with high oxygen evolution potential, high reactivity area and excellent catalytic activity. In this study, titanium oxide (Ti4O7) electrode was selected as the base electrode and modified by doping the transition metal element. Various characterization and degradation experiments showed that the catalytic ability of the modified electrode increased compared with that of pure Ti4O7 electrode. Of which, Zirconium (Zr) doping increased the oxygen evolution potential and electrocatalytic activity. Under the optimal conditions: current density of 30 mA·cm−2, initial pH 6.1, electrolyte of 100 mmol·L−1 Na2SO4 and 10 mmol·L−1 NaCl, the removal rate of chloromycin was 97.4%. Moreover, the electrode had a good anti-interference and stability, and still had excellent degradation rates of chloromycin under different pH interference (all higher than 81.1%). At the same time, zirconium-doped Ti4O7 modified electrode also had a good degradation ability to flufenicol or diclofenac sodium, their degradation rate reached 93.4% and 85.5%, respectively. This study provides a reference for the electrochemical removal of pollutants and anode modification research.-
Key words:
- electrochemical oxidation /
- Zr/Ti4O7 anode /
- doping /
- oxygen vacancy /
- chloramphenicol
-
表 1 在不同电流密度下Zr/Ti4O7阳极降解氯霉素的反应动力学常数及能耗
Table 1. Kinetic constants and energy consumption of chloramphenicol degradation by Zr/Ti4O7 anode at different current densities
电流密度/
(mA·cm−2)降解率/% k/min−1 R2 EEO/
(kWh·m−3)10 59.5 0.0071 9±0.000 2 0.991 7.25 20 73.8 0.0108 3±0.000 2 0.995 10.6 30 86.1 0.0147 9±0.000 5 0.990 12.99 40 91.0 0.0194 8±0.000 3 0.998 16.33 表 2 不同电氧化处理工艺对药物类有机物降解率的比较
Table 2. Comparison of degradation rates of medicated organic compounds by different electrooxidation processes
-
[1] KUMAR A, KHAN M, HE J, et al. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: A critical review[J]. Water Research, 2020, 170: 115356. doi: 10.1016/j.watres.2019.115356 [2] QIAO M, YING G-G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016 [3] BAILóN-PéREZ M I, GARCíA-CAMPAñA A M, CRUCES-BLANCO C, et al. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis[J]. Journal of Chromatography A, 2008, 1185(2): 273-280. doi: 10.1016/j.chroma.2007.12.088 [4] HEBERER T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicology Letters, 2002, 131(1-2): 5-17. doi: 10.1016/S0378-4274(02)00041-3 [5] LIN Y C, YU T H, LIN C F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan[J]. Chemosphere, 2009, 74(1): 131-141. [6] 唐玉霖, 曲鑫璐, 刘倩宏, 等. 紫外联用高级氧化技术降解氯霉素试验研究[J]. 同济大学学报(自然科学版), 2021, 49(09): 1249-1256. [7] CHU T, YANG D, CHU W, et al. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments[J]. Ecotoxicology and Environmental Safety, 2016, 124: 147-154. doi: 10.1016/j.ecoenv.2015.10.016 [8] WANG A, GUO S, ZHENG Z, et al. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix[J]. Journal of hazardous materials, 2022, 434: 128905. doi: 10.1016/j.jhazmat.2022.128905 [9] WANG A, CHEN Y, ZHENG Z, et al. In situ N-doped carbon-coated mulberry-like cobalt manganese oxide boosting for visible light driving photocatalytic degradation of pharmaceutical pollutants[J]. Chemical Engineering Journal, 2021, 411: 128497. doi: 10.1016/j.cej.2021.128497 [10] 赵瑞. 电化学法降解抗生素类有机物的研究[D]. 济南: 齐鲁工业大学, 2019. [11] 张思韬, 韩严和, 张晓飞, 等. 用于处理工业废水的电极材料研究进展[J]. 工业水处理, 2019, 3 9(11): 1-6. [12] 智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2018, 38(5): 1858-1867. [13] 韩金名. NF/CN-TF/Ti4O7电化学体系对磺胺甲基嘧啶降解机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [14] 王愚. 亚氧化钛电化学阳极氧化降解印染废水研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [15] XIE J, MA J, ZHANG C, et al. Effect of the Presence of Carbon in Ti4O7 Electrodes on Anodic Oxidation of Contaminants[J]. Environmental Science and Technology, 2020, 54(8): 5227-5236. doi: 10.1021/acs.est.9b07398 [16] BEJAN D, GUINEA E, BUNCE N J. On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex anodes[J]. Electrochimica Acta, 2012, 69: 275-281. doi: 10.1016/j.electacta.2012.02.097 [17] GAYEN P, CHEN C, ABIADE J T, et al. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2-TinO2n-1 electrocatalytic reactive electrochemical membranes[J]. Environmental Science and Technology, 2018, 52(21): 12675-12684. doi: 10.1021/acs.est.8b04103 [18] 杨泽坤, 刘永, 杨海涛等. 亚氧化钛电极的制备及其在废水处理中的应用[J]. 工业水处理, 2022, 42(11): 56-64. doi: 10.19965/j.cnki.iwt.2021-1118 [19] WANG H, LI Z, ZHANG F, et al. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater[J]. Separation and Purification Technology, 2021, 266: 118600. doi: 10.1016/j.seppur.2021.118600 [20] NAYAK S, CHAPLIN B P. Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes[J]. Electrochimica Acta, 2018, 263: 299-310. doi: 10.1016/j.electacta.2018.01.034 [21] 张立宝. Ti/SnO2-Sb-Ni电极制备及对CAP废水的降解机理研究[D]. 沈阳: 沈阳工业大学, 2020. [22] 杨志伟. 超声强化亚氧化钛阳极电化学氧化处理氯霉素废水的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [23] LIN H, NIU J, LIANG S, et al. Development of macroporous Magnéli phase Ti4O7 ceramic materials: as an efficient anode for mineralization of poly- and perfluoroalkyl substances[J]. Chemical Engineering Journal, 2018, 354: 1058-1067. doi: 10.1016/j.cej.2018.07.210 [24] ZHU K, SHI F, ZHU X, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761. doi: 10.1016/j.nanoen.2020.104761 [25] LI D, TANG J, ZHOU X, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode[J]. Chemosphere, 2016, 149: 49-56. doi: 10.1016/j.chemosphere.2016.01.078 [26] SäRKKä H, BHATNAGAR A, SILLANPää M. Recent developments of electro-oxidation in water treatment: A review[J]. Journal of Electroanalytical Chemistry, 2015, 754: 46-56. doi: 10.1016/j.jelechem.2015.06.016 [27] JIAO T, LU C, ZHANG D, et al. Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting[J]. Applied Catalysis B:Environmental, 2020, 269: 118768. doi: 10.1016/j.apcatb.2020.118768 [28] 于丽花, 薛娟琴, 张立华, 等. 操作条件对电氧化去除废水中有机污染物的影响研究[J]. 环境工程, 2017, 35(5): 6-10. [29] URANO Y, HIGUCHI T, HIROBE M. Substrate-dependent changes of the oxidative O-dealkylation mechanism of several chemical and biological oxidizing systems[J]. Journal of the Chemical Society Perkin Transactions, 1996, 6(6): 1169-1173. [30] 陈安妮, 童展梁, 姚佳超, 等. 电氧化处理印染行业膜后浓水的研究[J]. 工业水处理, 2021, 41(11): 51-55. [31] LUO C, MA J, JIANG J, et al. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82−[J]. Water Research, 2015, 80: 99-108. doi: 10.1016/j.watres.2015.05.019 [32] FANG G-D, DIONYSIOU D D, AL-ABED S R, et al. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs[J]. Applied Catalysis B:Environmental, 2013, 129: 325-332. doi: 10.1016/j.apcatb.2012.09.042 [33] 李靖宇, 王宪森, 王晓林, 等. 载铁活性炭颗粒电极降解氯霉素污染废水性能研究[J]. 江西化工, 2021, 37(5): 56-58. [34] CHEN J, XIA Y, DAI Q. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism[J]. Electrochimica Acta, 2015, 165: 277-287. doi: 10.1016/j.electacta.2015.02.029 [35] XU J, LIU Y, LI D, et al. Insights into the electrooxidation of florfenicol by a highly active La-doped Ti4O7 anode[J]. Separation and Purification Technology, 2022, 291: 120904. doi: 10.1016/j.seppur.2022.120904 [36] 滕刚刚. PbO2-ZrO2复合电极电催化氧化降解典型PPCPs类污染物的研究[D]. 天津: 河北工业大学, 2020.