-
氯苯类有机化合物是染料、农药、医药等行业中广泛应用的原料和有机溶剂,也是产品合成的中间体,已经成为我国化工场地常见的污染物之一[1-2]。氯苯类化合物作为典型的重质非水相液体 (Dense Non-Aqueous Phase Liquids,DNAPLs) ,进入土壤及地下水后,易在重力作用下向深层地下水迁移并累积[3],因其毒性大,化学性质稳定,难降解,早在1990年,氯苯、1,2-二氯苯、1,4-二氯苯、和六氯苯已经被我国列入水中优先控制污染物[4]。
目前针对土壤和地下水中氯苯类污染物的常用修复方法有化学氧化技术、热脱附技术和生物修复技术[5]。活化过硫酸盐技术是目前修复氯苯类污染地下水最常用的技术,其中包括热活化过硫酸盐、亚铁离子活化过硫酸盐[6-7]。原位氧化等措施会改变原生土壤性质、微生物群落结构等,甚至有可能产生有毒副产物[8]。因此,为了降低修复成本及环境影响,对暂不利用开发地块的修复,监控自然衰减 (monitored natural attenuation,MNA) 技术通常与其他修复技术联合使用。MNA是一种成本低、对地块环境扰动小的被动修复技术,主要通过原地块的微生物降解作用、稀释作用、吸附作用、蒸发作用和化学反应作用对污染物进行去除[9-10]。
美国超级基金场地修复报告统计结果显示,1990年地下水修复案例中MNA的应用低于10%,1995年增长至30%左右,2012至2014年该技术的应用比例进一步增加至33%,2015至2017年MNA占比为20%,2018至2020年MNA占比为31%[11]。南京市六合区某工业污染场地2012年至2016年监测了场地内1,2,4-三氯苯的脱氯转化,初步探索了由Dehalococcoides和Dehalobacter引导的降解机制[12]。江苏某化工场地2016年至2021年监测了场地内氯代烃的自然衰减,揭示了污染物的时空特征和不同区域微生物群落结构变化及其制约因素[13-14]。国内该技术起步较晚,监测时间较短,应用案例较少,且多用于氯代烃、石油烃、苯系物污染场地污染物质量浓度变化监测[15-19]。针对氯苯类污染地块自然衰减机制及其影响因素,目前研究还存在空白。
本研究以上海市某化工污染地块修复中试工程结束后2年的自然衰减监测为基础,从时间角度出发,探索1,2-二氯苯、1,4-二氯苯的降解速率。通过典型地球化学指标的变化,讨论其与地块微生物降解能力的关系,对比不同时间地下水细菌多样性,探讨其中可能存在的自然衰减规律和微生物群落结构变化的环境影响因素。
强化氧化后污染源浅层地下水中氯苯类污染物的自然衰减与微生物群落演化
Natural attenuation and microbial community evolution of chlorobenzene pollutants in shallow groundwater after enhanced oxidation
-
摘要: 监控自然衰减技术通常与其他地下水修复技术联用,以降低修复成本、减少环境影响,目前该技术在氯苯类污染地块的实践应用案例存在空白,其效果及作用机制尚不明确。以原位臭氧氧化和化学氧化中试后的氯苯类污染地块为研究对象,从实际工程案例的角度,监测强化氧化措施后2年内的氯苯类化合物的降解速率、细菌组成,评价不同修复措施后污染物自然衰减能力、探讨作用机制。结果显示,经过727 d的自然衰减,1,2-二氯苯和1,4-二氯苯在臭氧氧化区和化学氧化区中的降解率都超过了90%。臭氧氧化区地下水中1,2-二氯苯和1,4-二氯苯的一阶降解速率常数分别为0.005 2 d−1 (R2=0.857) 和0.006 0 d−1 (R2=0.967) ;化学氧化区地下水中污染物质量浓度在416 d后出现回升,不符合一阶衰减模型。细菌16S rRNA的高通量分析表明,臭氧和过硫酸钠氧化改变了地下水中细菌群落结构,在自然衰减过程中细菌群落结构逐渐恢复,环境因子S2−、ORP和pH值与细菌群落结构显著相关。本地块2个区域中试后416 d内都以化学氧化和微生物好氧降解为主,后向微生物厌氧降解转变。本研究可为氯苯类污染地下水修复工程的绿色高效实施提供参考。Abstract: The monitored natural attenuation technique is usually used in conjunction with other groundwater remediation technologies to reduce remediation costs and environmental impacts. However, there is still a gap in its practical application cases in chlorobenzenes contaminated sites, and the natural attenuation mechanism of chlorobenzenes is not clear. Therefore, this study took chlorobenzenes contaminated sites after pilot tests of in situ ozone oxidation or chemical oxidation as the research object. From the perspective of practical engineering cases, the bacterial composition of groundwater and degradation rate of chlorobenzene compounds in the two years after the intensified oxidation measures were monitored, the natural attenuation capacity of pollutants after different remediation measures were evaluated, and the mechanism of action was discussed. The results showed that after 727 days of natural decay, the degradation rates of 1, 2-dichlorobenzene and 1, 4-dichlorobenzene in the ozone oxidation zone and chemical oxidation zone both exceeded 90%. The first-order degradation rate constants of 1, 2-dichlorobenzene and 1, 4-dichlorobenzene in ozonation zone were 0.005 2 d−1 (R2=0.857) and 0.006 0 d−1 (R2=0.967), respectively. The concentration of pollutants in the groundwater in the chemical oxidation zone rose after 416 days, which was inconsistent with the one-order attenuation model. The results of bacterial 16S rRNA showed that ozone and sodium persulfate oxidation changed the bacterial community structure in groundwater, and the bacterial community structure gradually recovered during natural decay. The S2−, ORP and pH values of environmental factors were significantly correlated with bacterial community structure of groundwater in chlorobenzenes contaminated sites in this study. In 416 days after the pilot test, chemical oxidation and microbial aerobic degradation were dominant in two zones, and then changed to microbial anaerobic degradation. This study provides a reference for the green and efficient implementation of chlorobenzene contaminated groundwater remediation projects.
-
表 1 地下水中典型地球化学指标表
Table 1. Typical geochemical indexes in groundwater
样品
编号NO3−/
(mg·L−1)Fe2+/
(mg·L−1)SO42-/
(mg·L−1)S2-/
(mg·L−1)ORP/
mVpH值 TOC/
(mg·L−1)CO2/
(mg·L−1)DO/
(mg·L−1)碱度/
(mg·L−1)Cl−/
(mg·L−1)温度/
℃CK 10.6 <0.010 1 400 0.09 −131.4 6.8 41 113.8 <0.20 241 586.2 25.5 w1_ck 6.12 <0.010 442 8.8 −44.4 6.8 21.8 109.8 <0.20 386 49 24.6 w1_529d <0.05 0.283 204 59.6 −350.4 8.4 492 118.2 <0.20 275 37.6 26.5 w1_652d 4.06 0.194 243 0.01 −251.6 8.2 212 <4.0 1.45 134.3 145.4 21.5 w1_727d 0.56 2.16 697 0.502 −157.1 7.5 124 47.4 1.89 93 221.5 13.7 w2_ck 5.58 <0.010 74.3 0.21 3.3 7 138 145.3 <0.20 454 43 25.7 w2_529d 9.6 0.095 406 53.9 −268.3 8.2 42.4 21.9 <0.20 210 379.7 25.6 w2_652d 0.78 0.728 634 <0.01 −97.1 7.6 25.6 <4.0 2.08 177.8 205.3 21.4 W2_727d 1.59 2.52 1 540 1.04 −79.9 7.2 15.9 84.6 3.5 486 149.1 11 表 2 地下水生物降解能力得分表
Table 2. Biodegradability scores in groundwater
样品
编号分项指标得分 生物降解
能力得分*NO3− Fe2+ SO42- S2− ORP pH值 TOC CO2 DO 碱度 Cl− 温度 w1_ck 0 0 0 3 1 0 2 0 3 0 0 1 14 w1_529d 2 0 0 3 2 0 2 0 3 0 0 1 17 w1_652d 0 0 0 0 2 0 2 0 0 0 2 1 11 w1_727d 2 3 0 0 2 0 2 0 0 0 2 0 15 w2_ck 0 0 0 0 1 0 2 0 3 0 0 1 11 w2_529d 0 0 0 3 2 0 2 0 3 0 2 1 17 w2_652d 2 0 0 0 1 0 2 0 0 0 2 1 8 W2_727d 0 3 0 3 1 0 0 0 0 0 2 0 13 注:*参考EPA评分方法[33],因本地块关注污染物为氯苯类,挥发性脂肪酸和苯系物浓度指标都满足得分要求,统一总分加4,在此不单列。 表 3 地下水中微生物高通量数据统计结果 (每组样品2个平行)
Table 3. Statistical results of high-throughput data in groundwater. Data are given as mean±SD (n = 2)
生物多样
性指数CK 臭氧氧化区 化学氧化区 w1_ck w1_416d w1_529d w1_652d w1_727d w2_ck w2_416d w2_529d w2_652d w2_727d Sobs 2 910±
1292 909±
862 928±
2151 160±
241 281±
51 336±
661 470±
152 315±
4402 025±
2241 884±
1062 132±
231Shannon 6.576±
0.0825.949±
0.0896.755±
0.1904.800±
0.1074.888±
0.1555.470±
0.0044.988±
0.3225.362±
0.6755.656±
0.4245.492±
0.3785.313±
0.198Simpson 0.005±
0.0000.022±
0.0030.004±
0.0010.027±
0.0040.029±
0.0110.014±
0.0010.031±
0.0160.040±
0.0270.016±
0.0070.022±
0.0130.030±
0.002Ace 5 025.511±
955.3104 559.222±
190.4214 221.697±
176.2982 064.522±
551.1972 753.818±
78.8072 071.863±
158.7792 390.025±
374.3725 036.760±
350.8073 804.575±
845.1003 683.329±
76.4853 641.956±
221.255Chao1 4 335.848±
318.0774 430.149±
146.0284 189.969±
113.3611 822.019±
226.1292 100.149±
104.7711 913.870±
37.0792 042.517±
45.9853 820.097±
468.1993 280.057±
141.2282 980.934±
114.2673 027.674±
199.119Coverage 0.939±
0.0040.937±
0.0030.944±
0.0020.977±
0.0030.972±
0.0010.976±
0.0010.972±
0.0020.946±
0.0070.956±
0.0020.959±
0.0010.955±
0.003表 4 地下水中微生物表型预测相对丰度结果 (每组样品2个平行)
Table 4. Predicted relative abundance results of microbial phenotype in groundwater. Data are given as mean±SD (n = 2)
微生物
表型预测CK 臭氧氧化区 化学氧化区 w1_ck w1_416d w1_529d w1_652d w1_727d w2_ck w2_416d w2_529d w2_652d w2_727d 有氧菌 0.295±
0.0280.337±
0.0230.265±
0.0320.049±
0.0120.088±
0.0270.191±
0.0980.249±
0.1140.582±
0.0960.206±
0.1220.218±
0.0260.399±
0.031厌氧菌 0.294±
0.050.148±
0.0020.174±
0.0030.822±
0.0020.691±
0.0680.534±
0.1150.280±
0.1530.197±
0.0650.568±
0.1420.391±
0.0100.331±
0.044兼性厌氧菌 0.072±
0.0140.365±
0.0260.220±
0.0040.028±
0.0030.051±
0.0150.073±
0.0590.055±
0.0170.074±
0.0030.089±
0.0130.063±
0.0020.101±
0.022革兰氏阴性菌 0.874±
0.0270.933±
0.0070.849±
0.0160.928±
0.0100.836±
0.0340.708±
0.0640.913±
0.0160.958±
0.0190.754±
0.0830.793±
0.0060.958±
0.008革兰氏阳性菌 0.126±
0.0270.067±
0.0070.151±
0.0160.072±
0.0100.164±
0.0340.292±
0.0640.087±
0.0160.042±
0.0190.246±
0.0830.207±
0.0060.042±
0.008 -
[1] 李佳斌. 北京某染料厂污染地块土壤和地下水6种氯苯类化合物的分布特征及迁移转化分析[J]. 环境工程学报, 2022, 16(7): 2296-2307. [2] 孟宪荣, 许伟, 张建荣. 化工污染场地氯苯分布特征[J]. 土壤, 2019, 51(6): 1144-1150. [3] 张婉莹. 基于EVS的上海某化工污染场地中1, 4-二氯苯空间分布模拟研究[J]. 环境卫生工程, 2021, 29(3): 31-38. [4] 周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单[J]. 中国环境监测, 1990(4): 1-3. doi: 10.19316/j.issn.1002-6002.1990.04.001 [5] 刘乐, 张国良, 王芳, 等. 氯苯类化合物污染现状及其修复技术研究进展[J]. 湖北农业科学, 2022, 61(5): 91-97. doi: 10.14088/j.cnki.issn0439-8114.2022.05.018 [6] 刘小宁. 利用热活化过硫酸盐修复氯苯污染地下水的研究[D]. 硕士, 华东理工大学, 2013. [7] 王继鹏, 虞敏达, 蔡小波, 等. Fe~(2+)活化过硫酸钠原位修复氯苯污染地下水[J]. 环境工程学报, 2016, 10(3): 1276-1280. [8] 侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究, 2022, 35(9): 2015-2025. [9] US EPA, Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites[S]. U. S. Environmental Protection Agency, Washington, DC, EPA 20460. [10] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193. [11] US EPA. Superfund Remedy Report 17th Edition[R]. EPA-542-R-23-001 2023, Office of Land and Emergency Management. [12] QIAO W, LUO F, LOMHEIM L, MACK E E, et al. Natural Attenuation and Anaerobic Benzene Detoxification Processes at a Chlorobenzene-Contaminated Industrial Site Inferred from Field Investigations and Microcosm Studies[J]. Environmental Science & Technology, 2018, 52(1): 22-31. [13] FAN T, YANG M, LI Q, et al. A new insight into the influencing factors of natural attenuation of chlorinated hydrocarbons contaminated groundwater: A long-term field study of a retired pesticide site[J]. Journal of Hazardous Materials, 2022, 439: 129595. doi: 10.1016/j.jhazmat.2022.129595 [14] 范婷婷, 夏菲洋, 孔令雅, 等. 场地地下水中氯代甲烷烃自然衰减机制[J]. 环境工程学报, 2021, 15(12): 3934-3945. doi: 10.12030/j.cjee.202108083 [15] CHIU H Y, VERPOORT F, LIU J K, et al. Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation[J]. Journal of the Taiwan Institute of Chemical Engineer, 2017, 72: 53-61. doi: 10.1016/j.jtice.2017.01.002 [16] LV H, SU X, WANG Y, et al. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site[J]. Chemosphere, 2018, 206: 293-301. doi: 10.1016/j.chemosphere.2018.04.171 [17] 马欣程, 徐红霞, 孙媛媛, 等. 氯代烃污染场地生物自然衰减修复研究进展[J]. 中国环境科学, 2022, 42(11): 5285-5298. doi: 10.3969/j.issn.1000-6923.2022.11.035 [18] 周睿, 赵勇胜, 任何军, 等. BTEX在地下环境中的自然衰减[J]. 环境科学, 2009, 30(9): 2804-612808. doi: 10.13227/j.hjkx.2009.09.002 [19] 周艳, 姜登登, 孔令雅, 等. 典型农药污染场地地下水中苯系物监控自然衰减研究[J]. 环境科学学报, 2022, 42(7): 380-388. doi: 10.13671/j.hjkxxb.2021.0547 [20] 国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017 [S]. 北京: 中国环境科学出版社, 2017. [21] 生态环境部. 地下水环境监测技术规范: HJ/T 164-2020 [S]. 北京: 中国环境出版集团, 2020. [22] 生态环境部. 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 639-2012 [S]. 北京: 中国环境科学出版社, 2012. [23] EDGAR, ROBERT C. UPARSE: highly accurate OTU sequences from microbial amplicon reads.[J]. Nature Methods, 2013, 10(10): 996-998. doi: 10.1038/nmeth.2604 [24] LIU C, ZHAO D, MA W, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp[J]. Applied microbiology and biotechnology, 2016, 100(3): 1421-1426. doi: 10.1007/s00253-015-7039-6 [25] 黄先锋. 酸性条件下臭氧强化氧化缺电子芳香类和富电子胺类化合物的特性与机理[D]. 博士, 南京大学, 2016. [26] 刘芬, 魏东洋, 许振成, 等. 催化臭氧降解氯苯类化合物的研究进展[J]. 广东化工, 2009, 36(9): 62-63,99. doi: 10.3969/j.issn.1007-1865.2009.09.027 [27] 王冠群. 地下水中1, 2, 4-三氯苯污染的化学修复研究[D]. 硕士, 南京大学, 2015. [28] NING Z, ZHANG M, HE Z, et al. Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-Contaminated Site[J]. Water, 2018, 10(7): 842. doi: 10.3390/w10070842 [29] 李坡. 活化过硫酸盐原位修复苯胺污染地下水研究[D]. 硕士, 常州大学, 2022. [30] US EPA. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies[S]. United States Environmental Protection Agency, 2002. [31] 李岩云. 低渗透粘土介质中微生物介导的氯苯降解研究[D]. 武汉:中国地质大学, 2021. [32] DONG W, ZHANG Y, LIN X, et al. Prediction of 1, 2, 4-trichlorobenzene natural attenuation in groundwater at a landfill in Kaifeng, China[J]. Environmental Earth Sciences, 2014, 72(3): 941-948. doi: 10.1007/s12665-014-3386-3 [33] DONG W H, ZHANG P, LIN X Y, et al. Natural attenuation of 1, 2, 4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China[J]. Science of the Total Environment, 2015, 505: 216-222. doi: 10.1016/j.scitotenv.2014.10.002 [34] WIEDEMEIER T H, SWANSON M A, MOUTOUX D E, et al. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water[S]. United States Environmental Protection Agency, 1998. [35] ZHANG M, GUO C, SHI C, et al. A Quantitative Redox Zonation Model for Developing Natural Attenuation-Based Remediation Strategy in Hydrocarbon-Contaminated Aquifers[J]. Journal of Cleaner Production, 2021, 290(8): 125743. [36] 郑昭贤, 苏小四, 王鼐, 等. 浅层地下水中氯代烷烃生物降解的地下水化学响应规律研究[J]. 地球学报, 2014, 35(2): 230-238. doi: 10.3975/cagsb.2014.02.16 [37] 罗俊鹏, 赵一澍, 廖晓勇, 等. 化学预氧化-生物强化-生物刺激对土壤中菲降解的联合效应[J]. 环境工程学报, 2019, 13(10): 2521-2529. doi: 10.12030/j.cjee.201902033 [38] AULENTA F, MAJONE M, TANDOI V, Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions[J]. Journal of Chemical Technology And Biotechnology, 2006, 81: 1463-1474. [39] SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils And Sediments, 2011, 11: 129-140. doi: 10.1007/s11368-010-0272-9 [40] 甘平, 樊耀波, 王敏健. 氯苯类化合物的生物降解[J]. 环境科学, 2001(3): 93-96. doi: 10.3321/j.issn:0250-3301.2001.03.020 [41] MULLER T A, WERLEN C, SPAIN J, et al. Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia[J]. Environmental Microbiology, 2003, 5(3): 1462-2920. [42] HAIGLER B E, PETTIGREW C A, SPAIN J C. Biodegradation of Mixtures of Substituted Benzenes by Pseudomonas sp. strain JS150[J]. Applied and Environmental Microbiology, 1992, 58(7): 2237-2244. doi: 10.1128/aem.58.7.2237-2244.1992 [43] BALABEN N, YANKELZON I, ADAR E, et al. The spatial distribution of the microbial community in a contaminated aquitard below an industrial zone[J]. Water, 2019, 11(10): 2128. doi: 10.3390/w11102128 [44] ZOHRE K and JIM C S. Biodegradation of Chlorobenzene, 1, 2-Dichlorobenzene, and 1, 4-Dichlorobenzene in the Vadose Zone[J]. Environmental Science & Technology, 2013, 47: 3846-6854.