-
水体氟污染是全世界广泛关注的环境问题[1]。据统计,全球有近2亿人长期饮用氟化物超标的地下水[2]。氟摄入过量会引起氟斑牙、骨质疏松、脆性骨骼等疾病,对人体健康造成严重危害[3]。世界卫生组织(WHO)要求饮用水中氟化物的质量浓度不高于1.5 mg·L−1,而我国则制定了更为严格的饮用水氟化物标准(≤1.0 mg·L−1)[4]。工业生产是水体氟污染的重要来源之一,其中金属冶炼、化肥、电镀、半导体等行业在生产过程中会产生大量的酸性含氟废水,该类废水的稳定达标处理是相关行业可持续发展的重要保障[5]。
当前常用的污水除氟技术包括:沉淀法[6]、膜分离法[7]、离子交换法[8]、电絮凝法[9]以及吸附法[10]等。其中吸附法简单高效、运行稳定,常用于含氟废水的深度处理[1]。近年来,纳米金属氧化物(nanosized metal oxides, NMOs)因比表面积大、活性位点多、吸附速率快、吸附容量大等特点[11-12],成为吸附除氟领域的研究热点,其中最具代表性的有Al[13]、Mg[14]、La[15]、Ce[16]和Zr[17]等金属氧化物吸附材料。NMOs能够通过表面羟基的配体交换作用与氟离子形成稳定的M–F内核配位结构,实现污水中氟的选择性吸附[18-19]。然而,NMOs在酸性溶液中缺乏稳定性,溶解的金属离子将导致二次污染,这极大限制了NMOs在复杂工业废水处理中的适用性[20-21]。
近期的研究表明,磷酸铈(cerium phosphate, CeP)对重金属离子表现出良好的吸附性能,且在酸性或有机配体共存的溶液中具有优异的化学稳定性[22-23]。氧化铈能通过羟基配体交换、配位络合等作用实现氟的高效吸附[24],而CeP与氧化铈具有类似的Ce–O结构[25],由此推测CeP也能拥有良好的除氟性能。目前,环境领域有关CeP的研究多集中于阳离子污染物的吸附去除,对阴离子吸附行为的研究较少[26-27]。因此,本研究拟采用液相沉淀法制备CeP纳米吸附剂,考察其对酸性废水中氟的吸附特性,探究其理化性质及除氟机制,以期为酸性含氟废水的深度处理提供技术支撑。
纳米磷酸铈的制备及其对酸性废水中氟的吸附性能
Preparation of nano-cerium phosphate and its adsorption properties for fluoride in acidic wastewater
-
摘要: 采用液相沉淀法制备了磷酸铈纳米吸附剂(CeP),并研究了CeP对酸性废水中氟化物的去除特性。结果表明,与纳米水合氧化铈(HCO)相比,CeP在酸性条件下具有更强的稳定性。溶液pH对CeP的除氟性能有较大影响,酸性条件更有利于CeP对氟的吸附,在pH=2~3时其除氟吸附量达到最大值。基于CeP与氟之间的静电吸引、配体交换和内配位络合等作用,CeP对氟表现出优异的吸附选择性。CeP对氟的吸附符合伪二阶吸附动力学模型,Langmuir模型能较好地描述等温吸附过程,298 K条件下由Langmuir模型拟合所得最大吸附量为49.72 mg·g−1,热力学计算结果表明CeP对氟的吸附属于自发放热过程。吸附饱和的CeP可采用NaOH溶液进行高效再生,再生后CeP的除氟性能没有明显下降,可长期重复使用,在酸性含氟废水处理领域具有良好的应有潜力。Abstract: In this study, the cerium phosphate (CeP) nano adsorbent was synthesized by liquid-phase precipitation method for efficient fluoride removal from acidic wastewater. The results showed that CeP exhibited better chemical stability under acidic conditions compared with nano hydrated cerium oxides (HCO). Fluoride uptake onto CeP was a pH-dependent process and acidic conditions were more conducive to its adsorption towards fluoride, which could reach the maximum capacity at pH 2~3. Based on the effects of electrostatic attraction, ligand exchange and inner-sphere complexation, CeP showed a conspicuous adsorption affinity towards fluoride. The adsorption of fluoride onto CeP followed pseudo-second-order kinetic model, and the Langmuir model could better describe the adsorption isotherm process than other thermodynamic models. The maximum adsorption capacity of CeP towards fluoride calculated by the Langmuir model was 49.72 mg·g−1, and the thermodynamic calculation results demonstrated the adsorption of fluoride was a spontaneous exothermic process. The exhausted CeP could be readily regenerated using NaOH solution, the fluoride removal performance of the regenerated CeP decreased slightly, and could be adapted for a long-term reutilization. The above results verified that CeP is an efficient adsorbent for fluoride removal from acid wastewater.
-
Key words:
- nano-cerium phosphate /
- acid wastewater /
- fluoride /
- preferential adsorption
-
表 1 CeP对氟的吸附动力学参数
Table 1. Adsorption kinetic parameters of CeP for fluoride
伪一阶动力学 伪二阶动力学 实验结果
qm/(mg·g−1)k1/min−1 qe/( mg·g−1) R2 k2/(g·(mg·min)−1) qe/( mg·g−1) R2 0.734 13.416 0.902 0.113 13.600 0.988 13.80 表 2 CeP对氟的等温吸附参数
Table 2. Adsorption isotherm parameters of CeP for fluoride
温度/K Langmuir 模型 Freundlich 模型 qm/(mg·g−1) KL/(L·mg−1) R2 KF/(mg·g−1) 1/n R2 298 49.720 0.070 5 0.996 6 9.308 0 0.358 6 0.962 4 303 44.105 0.069 6 0.997 4 8.451 7 0.351 2 0.959 7 308 41.673 0.067 9 0.991 8 7.942 5 0.350 9 0.976 8 表 3 不同吸附材料对氟吸附性能的对比
Table 3. Comparison of fluoride adsorption properties by different adsorbents
表 4 CeP对氟的吸附热力学参数
Table 4. Thermodynamic parameters of fluoride adsorption by CeP
初始氟质量浓度 /(mg·L−1) ∆H/(kJ·mol−1) ∆S /(J·(K·mol)−1) ∆G/(kJ·mol−1) 298 K 303 K 308 K 20 −21.868 −9.947 −18.908 −18.846 −18.809 40 −21.723 −13.401 −17.776 −17.566 −17.645 90 −17.041 −4.150 −15.853 −15.682 −15.815 -
[1] BHATNAGAR A, KUMAR E, SILLANPää M. Fluoride removal from water by adsorption: A review[J]. Chemical Engineering Journal, 2011171(3): 811-840. doi: 10.1016/j.cej.2011.05.028 [2] YANG W, TIAN S, TANG Q, et al. Fungus hyphae-supported alumina: An efficient and reclaimable adsorbent for fluoride removal from water[J]. Journal of Colloid and Interface Science, 2017496: 496-504. doi: 10.1016/j.jcis.2017.02.015 [3] BISWAS G, KUMARI M, ADHIKARI K, et al. A critical review on occurrence of fluoride and its removal through adsorption with an emphasis on natural minerals[J]. Current Pollution Reports, 20173(2): 104-119. doi: 10.1007/s40726-017-0054-8 [4] ROZOV I. New WHO (World Health Organization) guidelines for drinking water quality[D]. World Health Organization1995. [5] KU Y, CHIOU H. The Adsorption of fluoride ion from aqueous solution by activated alumina[J]. WaterAirSoil Pollution, 2004133(4): 349-361. [6] JIANG K, ZHOU K, YANG Y, et al. A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor[J]. Journal of Environmental Sciences, 201325(7): 1331-1337. doi: 10.1016/S1001-0742(12)60204-6 [7] QIANG L, WANG B, LI W, et al. Performance evaluation of magnetic anion exchange resin in removing of fluoride[J]. Journal of Chemical Technology and Biotechnology, 201591(6): 1747-1754. [8] BOUBAKRI A, BOUCHRIT R, HAFIANE A, et al. Fluoride removal from aqueous solution by direct contact membrane distillation: Theoretical and experimental studies[J]. Environmental Science and Pollution Research International, 201421(17): 10493-10503. doi: 10.1007/s11356-014-2858-z [9] ARAHMAN N, MULYATI S, LUBIS M, et al. The removal of fluoride from water based on applied current and membrane types in electrodialyis[J]. Journal of Fluorine Chemistry, 2016191(5): 97-102. [10] PAN B, XU J, WU B, et al. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environmental Science and Technology, 201347(16): 9347-9354. doi: 10.1021/es401710q [11] WANG J, WU L, LI J, et al. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism[J]. Journal of Alloys and Compounds, 2018753(5): 422-432. [12] DISHA K, SOMNATH M. A review of metal oxide nanomaterials for fluoride decontamination from water environment[J]. Materials Today: Proceedings, 201918(7): 1146-1155. [13] 赵晓钰, 宋兆阳, 乔庆东, 等. 吸附除氟氧化铝改性研究进展[J]. 当代化工, 202251(9): 2166-2170. [14] BARTLET J, CHAPMAN R. The removal of fluoride ion from aqueous solution by magnesium oxide[J]. Canadian Journal of Chemistry, 201133(10): 1629-1630. [15] RAO C, KARTHIKEYAN J. Removal of fluoride from water by adsorption onto lanthanum oxide[J]. WATER AIR AND SOIL POLLUTION, 2012223(3): 1101-1114. doi: 10.1007/s11270-011-0928-0 [16] XU Y, NING A, ZHAO J. Preparation and defluorination performance of activated cerium (IV) oxide/SiMCM-41 adsorbent in water[J]. Journal of Colloid and Interface Science, 2001235(1): 66-69. doi: 10.1006/jcis.2000.7344 [17] DOU X, MOHAN, PITTMAN C, et al. Remediating fluoride from water using hydrous zirconium oxide[J]. Chemical Engineering Journal, 2012198(8): 236-245. [18] ELHALIL A, QOURZAL S, MAHJOUBI F, et al. Defluoridation of groundwater by calcined Mg/Al layered double hydroxide[J]. Emerging Contaminants, 20162(1): 42-48. doi: 10.1016/j.emcon.2016.03.002 [19] 田追, 张震, 卢嫚, 等. 新型除氟吸附材料的研究进展[J]. 化工进展, 202241(6): 3051-3062. [20] GUO H, LI W, CHANG Z, et al. Mechanism study of fluoride adsorption by hydrous metal oxides[J]. Spectroscopy and Spectral Analysis, 201131(8): 2210-2214. [21] ZHANG Q, LI Y, PHANLAVONG P, et al. Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: Behavior and mechanism[J]. Journal of Cleaner Production, 2017161: 317-326. doi: 10.1016/j.jclepro.2017.05.120 [22] VARSHNEY K G, RAFIQUEE M Z, SOMYA A. Effect of surfactants on the adsorption behaviour of cerium (IV) phosphatecation exchanger for alkaline earths and heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007301(1/2/3): 69-72. [23] VARSHNEY K G, RAFIQUEE M Z, SOMYA A. Triton X-100 based cerium (IV) phosphate as a new Hg (II) selectivesurfactant based fibrous ion exchanger: Synthesischaracterization and adsorption behaviour[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008317(1-3): 400-405. [24] KANG D, YU X, GE M. Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal[J]. Chemical Engineering Journal, 2017330: 36-43. doi: 10.1016/j.cej.2017.07.140 [25] SHAKSHOOKI S K, EL-AKARI F A, EL-FITURI S M, et al. Fibrous cerium (IV) hydrogen phosphate membrane self-supported benzimidazole polymerization agent[J]. Advanced Materials Research, 2014856(5): 3-8. [26] VINISHA V P, CHATHOTH J. Polyaniline modified tin cerium phosphate composite cation exchanger: an eco-friendly adsorbent for lead and bismuth metal ions[J]. Astronomy and astrophysics, 2015409(1): 275-286. [27] SAHU S, BISHOYI N, PATEL R K. Cerium phosphate polypyrrole flower like nanocomposite: a recyclable adsorbent for removal of Cr (VI) by adsorption combined with in-situ chemical reduction[J]. Journal of Industrial and Engineering Chemistry, 202199(1): 117-130. [28] YANG W, SHI X, WANG J, et al. Fabrication of a novel bifunctional nanocomposite with improved selectivity for simultaneous nitrate and phosphate removal from water[J]. ACS ACS Applied Materials & Interfaces, 201911(38): 35277-35285. [29] WU X, ZHANG Y, DOU X, et al. Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: Characterization of adsorption sites and adsorbed fluorine complex species[J]. Chemical Engineering Journal, 2013223(3): 364-370. [30] 许乃才, 史丹丹. 介孔氧化铝纳米材料的制备及除氟性能研究[J]. 应用化工, 202352(2): 464-470. doi: 10.3969/j.issn.1671-3206.2023.02.027 [31] ESKANDARPOUR A, ONYANGO M S, OCHIENG A, et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite[J]. Journal of Hazardous Materials, 2008152(2): 571-579. doi: 10.1016/j.jhazmat.2007.07.020 [32] 史新星. 聚合物基水合氧化铈复合纳米材料对废水中磷和氟的深度去除[D]. 扬州: 扬州大学2021. [33] YANG W, SHI X, DONG H, et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal[J]. Chemical Engineering Journal, 2021405(7): 1249-1266. [34] ZHANG Y, QIAN Y, LI W, et al. Fluoride uptake by three lanthanum based nanomaterials: Behavior and mechanism dependent upon lanthanum species[J]. Science of the Total Environment, 2019683: 609-616. doi: 10.1016/j.scitotenv.2019.05.185 [35] ZHANG Q, DU Q, HUA M, et al. Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites[J]. Environmental Science and Technology, 201347(12): 6536-6544. doi: 10.1021/es400919t [36] SUNDARAM C S, VISWANATHAN N, MEENAKSHI S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies[J]. Journal of Hazardous Materials, 2008155(1/2): 206-215. [37] SWAIN S K, PATNAIK T, SINGH V K, et al. Kineticsequilibrium and thermodynamic aspects of removal of fluoride from drinking water using meso-structured zirconium phosphate[J]. Chemical Engineering Journal, 2011171(3): 1218-1226. doi: 10.1016/j.cej.2011.05.030 [38] DASH S S, SAHU M K, SAHU E, et al. Fluoride removal from aqueous solutions using cerium loaded mesoporous zirconium phosphate[J]. New Journal of Chemistry, 201539(9): 7300-7308. doi: 10.1039/C5NJ01030F [39] TENG S, WANG S, GONG W, et al. Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism[J]. Journal of Hazardous Materials, 2009168(2/3): 1004-1011. [40] ZHANG Y, LIN X, ZHOU Q, et al. Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginate-La particles fabricated via electro-coextrusion[J]. Applied Surface Science, 2016389: 34-45. doi: 10.1016/j.apsusc.2016.07.087 [41] GOSWAMI A, PURKAIT M K. The defluoridation of water by acidic alumina[J]. Chemical Engineering Research and Design, 201290(12): 2316-2324. doi: 10.1016/j.cherd.2012.05.002 [42] KUMAR E, BHATNAGAR A, JI M, et al. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH) [J]. Water Research, 200943(2): 490-498. doi: 10.1016/j.watres.2008.10.031 [43] XU L, CHEN G, PENG C, et al. Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions[J]. Carbohydrate Polymers, 2017160(15): 82-89. [44] MONDAL N K, BHAUMIK R, DATTA J K. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water[J]. Alexandria Engineering Journal, 201554(4): 1273-1284. doi: 10.1016/j.aej.2015.08.006 [45] MARKO C, HUGUES K P, MADHUMITA B, et al. Hydrous CeO2-Fe3O4 decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water[J]. Journal of Colloid and Interface Science, 2018532(7): 500-516. [46] ZHAO Y, LI X, LIU L, et al. Fluoride removal by Fe (III) -loaded ligand exchange cotton cellulose adsorbent from drinking water[J]. Carbohydrate Polymers, 200878(72): 144-151. [47] NEHRA S, RAGHAV S, KUMAR D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study[J]. Environmental Pollution, 2020258: 113773-113780. doi: 10.1016/j.envpol.2019.113773 [48] DENG S, LIU H, ZHOU W, et al. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water[J]. Journal of Hazardous Materials, 2011186(2): 1360-1366. [49] WANG X, PAN S, ZHANG M, et al. Modified hydrous zirconium oxide/PAN nanofibers for efficient defluoridation from groundwater[J]. Science of the Total Environment, 2019685(8): 401-410.