-
随着经济和社会快速发展,中国已成为全球最大的汽车市场,汽车销量连续8年位居全球第一,汽车报废量也在逐年递增[1]。报废汽车作为城市矿产,其处理过程主要包括去除污染物、拆解和破碎三个阶段,除铁、有色金属等可回收利用外,剩余的残留物被称为汽车拆解破碎残渣(automotive shredder residue, ASR)[2]。预计2022年我国汽车报废量将超过2 450×104 辆,产生的ASR (平均每辆车重按1 000 kg计算,ASR约占报废汽车总重量的25 %) 将超过612×104 t。
ASR成分复杂、热值较高且多为难降解物质,通过热处理方式进行资源化利用是更为绿色经济的处理方式[3-4]。将ASR与城市固废掺混焚烧可实现能量回收,但ASR氯含量较高,容易造成热处理设备的腐蚀,ASR含有的矿物质在剧烈焚烧条件下容易产生飞灰或结渣。气化可在较温和条件下实现有机固废能源化处理,清洁合成气可用于再生铝等其他循环经济工艺[5-8]。
本研究在自制的小型固定床气化实验装置上,以ASR为原料、采用空气作为气化剂,开展ASR空气气化特性研究,考察了空气当量比、反应温度对合成气品质、气化效率和碳转化率的影响。最后,根据气化实验结果对ASR气化过程进行质量和能量平衡分析,为ASR固定床空气气化系统设计和运行提供理论依据与指导。
汽车拆解废弃物固定床空气气化特性
Study on gasification characteristics of automotive shredder residue
-
摘要: 中国作为全球最大的汽车市场,报废汽车拆解破碎残渣已成为备受关注的“城市矿山”。在自制的固定床气化实验装置上,以汽车拆解废弃物为原料,考察了空气当量比、反应温度对合成气品质及气化指标的影响。结果表明:在0~0.3范围内,随着空气当量比的增大,合成气中可燃气组分产率先增大后减小、气化效率先升高后降低、碳转化率逐渐增大;在700-900 ℃温度范围内,随着温度的提高,合成气中可燃气体组分产率增大、气化效率和碳转化率均逐渐增大;当空气当量比为0.2、气化温度为900 ℃时,气化效率最高。对900 ℃气化实验结果进行质量和能量平衡分析,结果表明:该系统质量平衡误差仅为5%,满足质量平衡要求;能量回收率和能耗比分别为55.39%和2.28,汽车拆解废弃物气化具有系统热自持和为其他用能工艺过程提供能源的潜力。Abstract: On a self-made fixed bed gasifier, the effects of air equivalence ratio and reaction temperature on the quality of synthetic gas and gasification indicators were investigated using automotive shredder residue (ASR) as feedstock. The results showed that within a range of 0-0.3, with the increase of air equivalence ratio, the production of combustible gas components in synthesis gas increased first and then decreases, the gasification efficiency first increased and then decreased, and the carbon conversion rate gradually increased. Within the temperature range of 700-900 ℃, as the temperature increased, the yield of combustible gas components in the synthesis gas increased, and the gasification efficiency and carbon conversion rate gradually increased. When the air equivalence ratio was 0.2 and the gasification temperature was 900 ℃, the cold gas efficiency was the highest. The mass and energy balance analysis of the gasification test at 900 ℃ showed that the mass balance error of the system was only 5%, which met the mass balance requirements. The energy recovery rate and energy consumption ratio were 55.39% and 2.28, respectively, indicating that gasification of ASR had the potential for systematic thermal self-sufficiency and providing energy for other energy-consuming processes.
-
Key words:
- automotive shredder residue /
- gasification /
- air equivalent ratio /
- temperature /
- mass balance /
- energy balance
-
表 1 ASR的工业分析、元素分析和热值
Table 1. Proximate, ultimate and heating value analyses of ASR
工业分析/%, ad 热值QLHV/MJ·kg−1 水分 灰分 挥发分 固定碳 1.56 13.00 71.68 13.76 24.18 元素分析/%, ad 碳 氢 氧 氮 硫 55.22 6.33 23.17 2.12 0.16 表 2 选定工况下的系统物料平衡表
Table 2. Mass balance under selected operating condition
g 收入项 支出项 ASR 氧气 总计 气化残渣 合成气 焦油 总计 0.50 0.087 0.59 0.09 0.37 0.11 0.57 表 3 ASR气化能量平衡计算参数
Table 3. Parameters for ASR gasification balance calculation
参数及单位 符号 数值 原料进口温度/ ℃ T0 25.00 出口温度/ ℃ T1 900.00 进样量/kg MA 1.00 焦油产量/kg Mt 0.23 残渣产量/kg Mc 0.18 水的比热容/kJ·(kg· ℃)−1 Cw 4.18 焦油的比热容/ kJ·(kg· ℃)−1 Cpt 1.45 焦油的汽化潜热/ kJ·kg−1 △Ht 355.00 固体残渣比热容/ kJ·(kg· ℃)−1 Cpc 1.10 气体热值/kJ Qg 17 691.26 焦油热值/ kJ·kg−1 qt 28 290.00 残渣热值/ kJ·kg−1 qc 3 042.46 水的汽化潜热/ kJ·kg−1 $ \Delta {{\text{H}}_{{\text{vap}}}} $ 2 257.20 表 4 各气体组分的物性参数
Table 4. Physical parameters of gaseous components
参数 Cp,i,T ℃/kJ (m3 ℃)−1 25 ℃ 900 ℃ H2 1.277 1.323 N2 1.293 1.380 CO 1.302 1.403 CO2 1.593 2.179 CH4 1.566 2.596 C2H4 1.716 3.450 C2H6 2.266 4.546 C3H6 2.744 5.442 C3H8 3.155 6.568 表 5 选定工况下的气化系统能量平衡表
Table 5. Energy balance under selected operating condition
收入项 热量/kJ ASR的化学能 24 180 最小理论外加热量 7 760.33 总计 31 940.33 支出项 热量/kJ 固体残渣化学热 547.64 合成气化学热 17 691.26 焦油化学热 6 365.25 固体残渣显热 173.25 合成气显热 6 797.59 焦油显热 365.34 总计 31 940.33 -
[1] 王博翰, 杨斌 陈铭. 报废汽车破碎残余物及其塑料组分的催化热解研究[J]. 机械设计与制造, 2020(3): 9-12. doi: 10.3969/j.issn.1001-3997.2020.03.003 [2] NOTARNICOLA M, CORNACCHIA G, DE GISI S, et al. Pyrolysis of automotive shredder residue in a bench scale rotary kiln[J]. Waste Management, 2017, 65: 92-103. doi: 10.1016/j.wasman.2017.04.002 [3] MANCINI G, VIOTTI P, LUCIANO A, et al. On the ASR and ASR thermal residues characterization of full scale treatment plant[J]. Waste Management, 2014, 34(2): 448-457. doi: 10.1016/j.wasman.2013.11.002 [4] LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2015, 37: 26-44. doi: 10.1016/j.wasman.2014.11.010 [5] ANZANO M, COLLINA E, PICCINELLI E, et al. Lab-scale pyrolysis of the automotive shredder residue light fraction and characterization of tar and solid products[J]. Waste Management, 2017, 64: 263-271. doi: 10.1016/j.wasman.2017.03.013 [6] DONAJ P, YANG W H, BŁASIAK W, et al. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification[J]. Journal of Hazardous Materials, 2010, 182: 80-89. doi: 10.1016/j.jhazmat.2010.05.140 [7] DE MARCO I, CABALLERO B M, CABRERO M A, et al. Recycling of automobile shredder residues by means of pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79: 403-408. doi: 10.1016/j.jaap.2006.12.002 [8] ZOLEZZI M, NICOLELLA C , FERRARA S, et al. Conventional and fast pyrolysis of automobile shredder residues (ASR)[J]. Waste Management, 2004, 24(7): 691-699. [9] DONG W G, CHEN Z W, CHEN J C, et al. A novel method for the estimation of higher heating value of municipal solid wastes[J]. Energies, 2022, 15(7): 2593-2607. doi: 10.3390/en15072593 [10] QI R Y, CHEN Z W, WANG M F, et al. Prediction method for torrefied rice gusk based on gray-scale analysis[J]. Acs Omega, 2019, 4(18): 17837-17842. doi: 10.1021/acsomega.9b02478 [11] LIU S M, SUN H T, ZHANG D M, et al. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics[J]. Energy, 2023, 275: 127470. [12] 刘晓锋, 杨攀博, 王健, 等. 麦秆与褐煤共热解特性及动力学分析[J]. 太阳能学报, 2021, 42(9): 410-415. doi: 10.19912/j.0254-0096.tynxb.2020-0666 [13] 郑志行, 张家元, 李谦, 等. 下吸式固定床的生物质H2O/CO2气化数值模拟研究[J]. 太阳能学报, 2022, 43(5): 377-382. [14] 陈雨佳, 王勤辉, 王中霞, 等. 秸秆循环流化床空气气化特性的实验研究[J]. 动力工程学报, 2019, 39(10): 847-852. [15] 张伟, 陈晓平, 王清, 等. 城市污泥流化床中低温空气气化及重金属迁移特性[J]. 化工进展, 2019, 38(4): 2011-2021. doi: 10.16085/j.issn.1000-6613.2018-1231 [16] 于旷世. 循环流化床双床煤气化工艺试验研究[D]. 北京: 中国科学院研究生院, 2012. [17] 杨益. 烟草废弃物热解和气化的实验及机理研究[D]. 武汉: 华中科技大学, 2012.