基于权重敏感度分布研究太湖有机磷农药单一和复合风险
Study on Risk of Organophosphate Pesticides Mixture in Tai Lake Based on Weight Species Sensitivity Distribution
-
摘要: 基于实验室能得到的有限毒性数据的物种敏感度分布法(species sensitivity distribution, SSD)很难充分代表特定区域生态系统的物种分布,需要采用考虑生物区系特征进行赋予权重的物种敏感度分布法(weighted species sensitivity distribution, WSSD)。基于太湖物种组成构建WSSD,使用最大累积率(maximum cumulative ratio, MCR)(含风险商法(hazard quotient, HQ))和概率风险评价法(probabilistic risk assessment, PRA)对太湖地区单一和混合有机磷农药的风险进行研究。结果表明,相对于传统SSD方法,加权SSD方法计算的风险商大,且5%生物受影响的概率更大。单一风险评价中,敌敌畏和乐果5%生物受影响的概率超过40%,需要优先控制;最大累积率表明,敌敌畏是复合风险的主要贡献者,单一风险评价中风险较小的马拉硫磷和对硫磷也对复合风险贡献较大,复合暴露风险评价是必要的,混合物的风险商>1,5%生物受复合暴露影响的概率高达90%,有机磷农药复合生态风险不容忽视。Abstract: Due to limited laboratorial toxicity data, the traditional species sensitivity distribution (SSD) without considering species composition may not sufficiently represent the species distribution of site-specific ecosystems. Based on the species composition of Tai Lake, the weighted species sensitivity distribution (WSSD) method is used to link the laboratorial toxicity data to actual environmental scene. The maximum cumulative ratio with hazard quotient and probabilistic risk assessment are further used to compare risk of single and mixture organophosphate pesticides in Tai Lake. The results show that the hazard quotient calculated by the WSSD is larger and 5% of the species are more likely to be affected comparing with the traditional SSD method. The probability that 5% of species will be affected is more than 40%, dichlorvos or dimethoate need to be controlled first. In the mixture exposure risk assessment, dichlorvos is the main contributor. Malathion and parathion which have lower risk in the single risk assessment also contribute greatly to the combined risk. Combined exposure risk assessment is necessary. The hazard quotient of the mixture is greater than 1. The probability that 5% of species will be affected is greater than 90% under the current conditions of 5 organophosphate pesticides. The ecological risk of organophosphate pesticides in Tai Lake cannot be ignored.
-
-
Kooijman S. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987, 21(3):269-276 Forbes V E, Calow P. Species sensitivity distributions revisited:A critical appraisal[J]. Human and Ecological Risk Assessment, 2002, 8(3):473-492 Wang Y Y, Zhang L S, Meng F S, et al. Improvement on species sensitivity distribution methods for deriving sitespecific water quality criteria[J]. Environmental Science and Pollution Research, 2015, 22(7):5271-5282 Tam N T, Berg H, Tuyen P T B, et al. Effect of chlorpyrifos ethyl on acetylcholinesterase activity in climbing perch (Anabas testudineus, Bloch, 1972)[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(4):515-524 Chen H, Zhu J Q, Li Z, et al. The occurrence and risk assessment of five organophosphorus pesticides in river water from Shangyu, China[J]. Environmental Monitoring and Assessment, 2016, 188(11):9 马瑾,潘根兴,万洪富,等.有机磷农药的残留、毒性及前景展望[J].生态环境, 2003, 12(2):213-215 Ma J, Pan G X, Wan H F, et al. The toxicity, residues and the propect of organic phosphorus pesticide[J]. Ecology and Environment, 2003, 12(2):213-215(in Chinese)
Guler M, Turkoglu V, Basi Z. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGONH 2 nanocomposites[J]. Electrochimica Acta, 2017, 240:129-135 Voorhees J R, Rohlman D S, Lein P J, et al. Neurotoxicity in preclinical models of occupational exposure to organophosphorus compounds[J]. Frontiers in Neuroscience, 2017, 10:24 林锋.有机磷农药对水体的污染[J].江西化工, 2018(6):21-23 Lin F. Pollution of water by organophosphorus pesticides[J]. Jiangxi Chemical Industry, 2018 (6):21-23(in Chinese)
Cequier E, Sakhi A K, Haug L S, et al. Exposure to organophosphorus pesticides in Norwegian mothers and their children:Diurnal variability in concentrations of their biomarkers and associations with food consumption[J]. Science of the Total Environment, 2017, 590:655-662 Mostafalou S, Abdollahi M. Pesticides:An update of human exposure and toxicity[J]. Archives of Toxicology, 2017, 91(2):549-599 丁浩东,万红友,秦攀,等.环境中有机磷农药污染状况、来源及风险评价[J].环境化学, 2019, 38(3):463-479 Ding H D, Wan H Y, Qin P, et al. Occurrence, sources and risk assessment of organophosphorus pesticides in the environment, China[J]. Environmental Chemistry, 2019, 38(3):463-479(in Chinese)
Sun H W, Giesy J P, Jin X W, et al. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China[J]. Science of the Total Environment, 2017, 586:163-173 Pathiratne A, Kroon F J. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems[J]. Environmental Toxicology and Chemistry, 2016, 35(2):419-428 Chen Y, Yu S Y, Tang S, et al. Site-specific water quality criteria for aquatic ecosystems:A case study of pentachlorophenol for Tai Lake, China[J]. Science of the Total Environment, 2016, 541:65-73 陈立侨,刘影,杨再福,等.太湖生态系统的演变与可持续发展[J].华东师范大学学报:自然科学版, 2003(4):99-106 Chen L Q, Liu Y, Yang Z F, et al. Ecological succession and sustainable development in Taihu Lake[J]. Journal of East China Normal University:Natural Science, 2003 (4):99-106(in Chinese)
Gu X, Zhang S, Bai X, et al. Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands[J]. Acta Ecologica Sinica, 2005, 25(7):1541-1548 雷泽湘,徐德兰,顾继光,等.太湖大型水生植物分布特征及其对湖泊营养盐的影响[J].农业环境科学学报, 2008, 27(2):698-704 Lei Z X, Xu D L, Gu J G, et al. Distribution characteristics of aquatic macrophytes and their effects on the nutrients of water and sediment in Taihu Lake[J]. Journal of Agro-Environment Science, 2008, 27(2):698-704(in Chinese)
苏海磊.太湖生物区系特征及其与我国湖泊水质基准推导的关系[D].北京:中国环境科学研究院, 2011:5-35 Su H L.The aquatic biota characteristics of Taihu Lake and its relationship with the derivation of lake water quality criteria in China[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2011:5 -35(in Chinese)
Montuori P, Aurino S, Garzonio F, et al. Estimates of Tiber River organophosphate pesticide loads to the Tyrrhenian Sea and ecological risk[J]. Science of the Total Environment, 2016, 559:218-231 Wang B, Yu G, Huang J, et al. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches[J]. Ecotoxicology, 2008, 17(8):716-724 Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment[J]. Crop Protection, 2000, 19(8-10):649-655 Hela D G, Lambropoulou D A, Konstantinou A K, et al. Environmental monitoring and ecological risk assessment for pesticide contamination and effects in Lake Pamvotis, northwestern Greece[J]. Environmental Toxicology and Chemistry, 2005, 24(6):1548-1556 Price P S, Han X L. Maximum cumulative ratio (MCR) as a tool for assessing the value of performing a cumulative risk assessment[J]. International Journal of Environmental Research and Public Health, 2011, 8(6):2212-2225 Junghans M, Backhaus T, Faust M, et al. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures[J]. Aquatic Toxicology, 2006, 76(2):93-110 Ta N, Zhou F, Gao Z Q, et al. The status of pesticide residues in the drinking water sources in Meiliangwan Bay, Taihu Lake of China[J]. Environmental Monitoring and Assessment, 2006, 123(1-3):351-370 Qu C S, Chen W, Bi J, et al. Ecological risk assessment of pesticide residues in Taihu Lake wetland, China[J]. Ecological Modelling, 2011, 222(2):287-292 Shi R, Yang C, Su R, et al. Weighted species sensitivity distribution method to derive site-specific quality criteria for copper in Tai Lake, China[J]. Environmental Science and Pollution Research, 2014, 21(22):12968-12978 范成新.太湖水体生态环境历史演变[J].湖泊科学, 1996, 8(4):297-304 Fan C X. Historical evolution of water ecological setting in Taihu Lake[J]. Lake Science, 1996, 8(4):297-304(in Chinese)
钱奎梅,陈宇炜,宋晓兰.太湖浮游植物优势种长期演化与富营养化进程的关系[J].生态科学, 2008, 27(2):65-70 Qian K M, Chen Y W, Song X L. Long-term development of phytoplankton dominant species related to eutrophicarion in Lake Taihu[J]. Ecologic Science, 2008, 27(2):65-70(in Chinese)
Gong Z J, Xie P. Impact of eutrophication on biodiversity of the macrozoobenthos community in a Chinese shallow lake[J]. Journal of Freshwater Ecology, 2001, 16(2):171-178 Nie F H, Li T, Wu X F, et al. Treatment methods of algae eutrophication water body[J]. China Water & Wastewater, 2006, 22(18):11-15 刘景红,张晟,陈玉成,等.重庆市水库富营养化现状及防治对策[J].西南大学学报:自然科学版, 2005, 27(4):464-469 Liu J H, Zhang S, Chen Y C, et al. Eutrophication of reservoirs in Chongqing and policy recommendations for its prevention[J]. Journal of Southwest Agricultural University, 2005, 27(4):464-469(in Chinese)
Wang B, Yu G, Huang J, et al. Tiered aquatic ecological risk assessment of organochlorine pesticides and their mixture in Jiangsu reach of Huaihe River, China[J]. Environmental Monitoring and Assessment, 2009, 157(1-4):29-42 Chen C S. Ecological risk assessment for aquatic species exposed to contaminants in Keelung River, Taiwan[J]. Chemosphere, 2005, 61(8):1142-1158 -

计量
- 文章访问数: 2978
- HTML全文浏览数: 2978
- PDF下载数: 114
- 施引文献: 0