微囊藻毒素诱导细胞自噬的研究进展

何丽, 刘林, 林长高, 隗黎丽. 微囊藻毒素诱导细胞自噬的研究进展[J]. 生态毒理学报, 2020, 15(6): 82-88. doi: 10.7524/AJE.1673-5897.20190623001
引用本文: 何丽, 刘林, 林长高, 隗黎丽. 微囊藻毒素诱导细胞自噬的研究进展[J]. 生态毒理学报, 2020, 15(6): 82-88. doi: 10.7524/AJE.1673-5897.20190623001
He Li, Liu Lin, Lin Changgao, Wei Lili. Research Progress on Autophagy Induced by Microcystins[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 82-88. doi: 10.7524/AJE.1673-5897.20190623001
Citation: He Li, Liu Lin, Lin Changgao, Wei Lili. Research Progress on Autophagy Induced by Microcystins[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 82-88. doi: 10.7524/AJE.1673-5897.20190623001

微囊藻毒素诱导细胞自噬的研究进展

    作者简介: 何丽(1995-),女,硕士研究生,研究方向为鱼类免疫学,E-mail:lihejxyc@163.com
    通讯作者: 隗黎丽, E-mail: hbliliwei@163.com
  • 基金项目:

    国家自然科学基金资助项目(31760764,31460146)

  • 中图分类号: X171.5

Research Progress on Autophagy Induced by Microcystins

    Corresponding author: Wei Lili, hbliliwei@163.com
  • Fund Project:
  • 摘要: 微囊藻毒素是由蓝藻产生的次生代谢产物,具有很强的肝毒性、肾毒性、生殖毒性及神经毒性等。而自噬作为维持细胞稳态的自我更新机制,在应对有毒物质胁迫时发挥着重要作用,最新的研究报道表明微囊藻毒素可诱导细胞自噬。目前,微囊藻毒素诱导细胞自噬的研究,主要以肝细胞、肾细胞、性腺细胞及神经细胞为研究对象。本文综述了微囊藻毒素对上述细胞自噬诱导的研究进展,且从氧化应激途径和内质网应激途径探讨微囊藻毒素诱导细胞自噬的机制,并对今后研究方向进行了展望,可为全面剖析微囊藻毒素的毒性机理以及自噬在其中发挥的具体作用提供参考。
  • 加载中
  • Massey I Y, Yang F, Ding Z, et al. Exposure routes and health effects of microcystins on animals and humans:A mini-review[J]. Toxicon, 2018, 151:156-162
    Ikehara T, Nakashima J, Nakashima S, et al. Different responses of primary normal human hepatocytes and human hepatoma cells toward cyanobacterial hepatotoxin microcystin-LR[J]. Toxicon, 2015, 105:4-9
    Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells[J]. International Journal of Molecular Sciences, 2010, 11(1):268-287
    Muzzio A M, Noyes P D, Stapleton H M, et al. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2014, 167:77-89
    Yang X H, Liu W Y, Lin H, et al. Interaction effects of AFB1 and MC-LR co-exposure with polymorphism of metabolic genes on liver damage:Focusing on SLCO1B1 and GSTP1[J]. Scientific Reports, 2017, 7(1):16164
    Wang Z K, Li G Y, Wu Q, et al. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish[J]. Chemosphere, 2019, 214:598-605
    Meng X N, Peng H R, Ding Y Z, et al. A transcriptomic regulatory network among miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs regulates microcystin-leucine arginine (MC-LR)-induced male reproductive toxicity[J]. The Science of the Total Environment, 2019, 667:563-577
    Wang J, Zhang C L, Zhu J L, et al. Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR[J]. The Science of the Total Environment, 2019, 689:662-678
    Dikic I. Proteasomal and autophagic degradation systems[J]. Annual Review of Biochemistry, 2017, 86:193-224
    Bhat P, Kriel J, Shubha Priya B, et al. Modulating autophagy in cancer therapy:Advancements and challenges for cancer cell death sensitization[J]. Biochemical Pharmacology, 2018, 147:170-182
    Tekirdag K, Cuervo A M. Chaperone-mediated autophagy and endosomal microautophagy:Joint by a chaperone[J]. The Journal of Biological Chemistry, 2018, 293(15):5414-5424
    Feng Y C, Yao Z Y, Klionsky D J. How to control self-digestion:Transcriptional, post-transcriptional, and post-translational regulation of autophagy[J]. Trends in Cell Biology, 2015, 25(6):354-363
    Swart C, Du Toit A, Loos B. Autophagy and the invisible line between life and death[J]. European Journal of Cell Biology, 2016, 95(12):598-610
    Liu T Z, Mazmouz R, Neilan B A. An in vitro and in vivo study of broad-range phosphopantetheinyl transferases for heterologous expression of cyanobacterial natural products[J]. ACS Synthetic Biology, 2018, 7(4):1143-1151
    Puddick J, Prinsep M R, Wood S A, et al. Further characterization of glycine-containing microcystins from the McMurdo dry Valleys of Antarctica[J]. Toxins, 2015, 7(2):493-515
    Rastogi R P, Sinha R P, Incharoensakdi A. The cyanotoxin-microcystins:Current overview[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(2):215-249
    Puddick J, Prinsep M R, Wood S A, et al. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners[J]. Marine Drugs, 2014, 12(11):5372-5395
    Mohamed Z A, Deyab M A, Abou-Dobara M I, et al. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt:Implication for water treatment and human health[J]. Environmental Science and Pollution Research, 2015, 22(15):11716-11727
    Xing Y N, Xu Y H, Chen Y, et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins[J]. Cell, 2006, 127(2):341-353
    Garda T, Kónya Z, Freytag C, et al. Allyl-isothiocyanate and microcystin-LR reveal the protein phosphatase mediated regulation of metaphase-anaphase transition in Vicia faba[J]. Frontiers in Plant Science, 2018, 9:1823
    Wang B L, Liu J H, Huang P, et al. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2)[J]. Environmental Toxicology, 2017, 32(3):890-903
    Chen L, Li S C, Guo X C, et al. The role of GSH in microcystin-induced apoptosis in rat liver:Involvement of oxidative stress and NF-κB[J]. Environmental Toxicology, 2016, 31(5):552-560
    Liu W Y, Wang L Q, Zheng C F, et al. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines[J]. Environmental Pollution, 2018, 233:455-463
    Lin W, Guo H H, Wang L K, et al. Waterborne microcystin-LR exposure induced chronic inflammatory response via MyD88-dependent toll-like receptor signaling pathway in male zebrafish[J]. The Science of the Total Environment, 2020, 702:134969
    Chen H Q, Zhao J, Li Y, et al. Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells[J]. Toxicology Letters, 2018, 289:42-53
    Chen Y, Zhou Y, Wang X T, et al. Microcystin-LR induces autophagy and apoptosis in rat Sertoli cells in vitro[J]. Toxicon, 2013, 76:84-93
    Fischer A, Hoeger S J, Stemmer K, et al. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro:A comparison of primary human hepatocytes and OATP-transfected HEK293 cells[J]. Toxicology and Applied Pharmacology, 2010, 245(1):9-20
    Zhao S J, Xie P, Chen J, et al. A proteomic study on liver impairment in rat pups induced by maternal microcystin-LR exposure[J]. Environmental Pollution, 2016, 212:197-207
    Shuai Y, Lou D, Yin J X, et al. Characterization of microcystin-induced dualistic toxic effects on primary rat hepatocytes[J]. Journal of Environmental Pathology, Toxicology and Oncology:Official Organ of the International Society for Environmental Toxicology and Cancer, 2017, 36(1):15-27
    Shi Y, Jiang J L, Shan Z J, et al. Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR[J]. Ecotoxicology, 2015, 24(3):511-519
    Qiao Q, Djediat C, Huet H, et al. Subcellular localization of microcystin in the liver and the gonads of medaka fish acutely exposed to microcystin-LR[J]. Toxicon, 2019, 159:14-21
    Zhang H J, Cai C C, Fang W D, et al. Oxidative damage and apoptosis induced by microcystin-LR in the liver of Rana nigromaculata in vivo[J]. Aquatic Toxicology, 2013, 140-141:11-18
    Dabholkar A S, Carmichael W W. Ultrastructural changes in the mouse liver induced by hepatotoxin from the freshwater cyanobacterium Microcystis aeruginosa strain 7820[J]. Toxicon, 1987, 25(3):285-292
    Menezes C, Alverca E, Dias E, et al. Involvement of endoplasmic reticulum and autophagy in microcystin-LR toxicity in Vero-E6 and HepG2 cell lines[J]. Toxicology in Vitro, 2013, 27(1):138-148
    吴珍, 张亚, 贝云成, 等. 微囊藻毒素-LR对小鼠肝细胞线粒体功能的影响[J]. 现代生物医学进展, 2014, 14(2):226-229

    Wu Z, Zhang Y, Bei Y C, et al. Exploring the effects of MC-LR on mitochondrial function in mouse liver[J]. Progress in Modern Biomedicine, 2014, 14(2):226-229(in Chinese)

    Yin J, Wagner D J, Prasad B, et al. Renal secretion of hydrochlorothiazide involves organic anion transporter 1/3, organic cation transporter 2, and multidrug and toxin extrusion protein 2-K[J]. American Journal of Physiology Renal Physiology, 2019, 317(4):F805-F814
    Alverca E, Andrade M, Dias E, et al. Morphological and ultrastructural effects of microcystin-LR from Microcystis aeruginosa extract on a kidney cell line[J]. Toxicon, 2009, 54(3):283-294
    Lin W, Guo H H, Li Y F, et al. Single and combined exposure of microcystin-LR and nitrite results in reproductive endocrine disruption via hypothalamic-pituitary-gonadal-liver axis[J]. Chemosphere, 2018, 211:1137-1146
    Adegoke E O, Adeniran S O, Zeng Y, et al. Pharmacological inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine arginine toxicity in bovine Sertoli cells[J]. Journal of Applied Toxicology, 2019, 39(6):832-843
    Zhang S S, Liu C R, Li Y, et al. Novel role of ER stress and autophagy in microcystin-LR induced apoptosis in Chinese hamster ovary cells[J]. Frontiers in Physiology, 2016, 7:527
    Liu H H, Zhang X F, Zhang S S, et al. Oxidative stress mediates microcystin-LR-induced endoplasmic reticulum stress and autophagy in KK-1 cells and C57BL/6 mice ovaries[J]. Frontiers in Physiology, 2018, 9:1058
    Wang J, Chen Y B, Zhang C L, et al. Learning and memory deficits and Alzheimer's disease-like changes in mice after chronic exposure to microcystin-LR[J]. Journal of Hazardous Materials, 2019, 373:504-518
    Yang Y, Wen C, Zheng S L, et al. Influence of microcystins-LR (MC-LR) on autophagy in human neuroblastoma SK-N-SH cells[J]. Journal of Toxicology and Environmental Health Part A, 2019, 82(21):1129-1136
    谭瑶, 邱志群, 黄玉晶, 等. 微囊藻毒素暴露对PC12细胞的影响[C]. 沈阳:环境与健康学术会议——精准环境健康:跨学科合作的挑战, 2018
    Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nature Reviews Molecular Cell Biology, 2018, 19(6):349-364
    Johnson C E, Tee A R. Exploiting cancer vulnerabilities:MTOR, autophagy, and homeostatic imbalance[J]. Essays in Biochemistry, 2017, 61(6):699-710
    Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin1 in the heart[J]. Journal of Molecular and Cellular Cardiology, 2016, 95:19-25
    Cordani M, Butera G, Pacchiana R, et al. Molecular interplay between mutant p53 proteins and autophagy in cancer cells[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2017, 1867(1):19-28
    Stothert A R, Fontaine S N, Sabbagh J J, et al. Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma[J]. Experimental Eye Research, 2016, 144:38-45
    Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants:The interplay[J]. BioMed Research International, 2014, 2014:761264
    Zhao Y Q, Qu T G, Wang P Q, et al. Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy[J]. Apoptosis, 2016, 21(5):517-531
    Li L L, Tan J, Miao Y Y, et al. ROS and autophagy:Interactions and molecular regulatory mechanisms[J]. Cellular and Molecular Neurobiology, 2015, 35(5):615-621
    Gurusamy N, Das D K. Autophagy, redox signaling, and ventricular remodeling[J]. Antioxidants & Redox Signaling, 2009, 11(8):1975-1988
    Tripathi D N, Zhang J W, Jing J, et al. A new role for ATM in selective autophagy of peroxisomes (pexophagy)[J]. Autophagy, 2016, 12(4):711-712
    Zhang J H, Zhang C, Jiang X P, et al. Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration[J]. Cell Death & Disease, 2019, 10(3):234
    Zabirnyk O, Liu W, Khalil S, et al. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy[J]. Carcinogenesis, 2010, 31(3):446-454
    Mahdi A A, Rizvi S H, Parveen A. Role of endoplasmic reticulum stress and unfolded protein responses in health and diseases[J]. Indian Journal of Clinical Biochemistry, 2016, 31(2):127-137
    Coffey M J, Jennison C, Tonkin C J, et al. Role of the ER and Golgi in protein export by Apicomplexa[J]. Current Opinion in Cell Biology, 2016, 41:18-24
    Chen H Y, Yang H L, Pan L, et al. The molecular mechanisms of XBP-1 gene silencing on IRE1α-TRAF2-ASK1-JNK pathways in oral squamous cell carcinoma under endoplasmic reticulum stress[J]. Biomedecine & Pharmacotherapie, 2016, 77:108-113
    Cebollero E, Reggiori F, Kraft C. Reticulophagy and ribophagy:Regulated degradation of protein production factories[J]. International Journal of Cell Biology, 2012, 2012:182834
    Avivar-Valderas A, Bobrovnikova-Marjon E, Alan Diehl J, et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK[J]. Oncogene, 2013, 32(41):4932-4940
    Song S L, Tan J, Miao Y Y, et al. Intermittent-hypoxia-induced autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 pathway is a protective response to pancreatic β-cell apoptosis[J]. Cellular Physiology and Biochemistry, 2018, 51(6):2955-2971
    B'Chir W, Maurin A C, Carraro V, et al. The eIF2 alpha/ATF4 pathway is essential for stress-induced autophagy gene expression[J]. Nucleic Acids Research, 2013, 41(16):7683-7699
    Deegan S, Saveljeva S, Gorman A M, et al. Stress-induced self-cannibalism:On the regulation of autophagy by endoplasmic reticulum stress[J]. Cellular and Molecular Life Sciences, 2013, 70(14):2425-2441
    Bootman M D, Chehab T, Bultynck G, et al. The regulation of autophagy by calcium signals:Do we have a consensus?[J]. Cell Calcium, 2018, 70:32-46
    Steiner K, Zimmermann L, Hagenbuch B, et al. Zebrafish Oatp-mediated transport of microcystin congeners[J]. Archives of Toxicology, 2016, 90(5):1129-1139
  • 加载中
计量
  • 文章访问数:  1896
  • HTML全文浏览数:  1896
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-23

微囊藻毒素诱导细胞自噬的研究进展

    通讯作者: 隗黎丽, E-mail: hbliliwei@163.com
    作者简介: 何丽(1995-),女,硕士研究生,研究方向为鱼类免疫学,E-mail:lihejxyc@163.com
  • 江西农业大学动物科学技术学院, 南昌 330045
基金项目:

国家自然科学基金资助项目(31760764,31460146)

摘要: 微囊藻毒素是由蓝藻产生的次生代谢产物,具有很强的肝毒性、肾毒性、生殖毒性及神经毒性等。而自噬作为维持细胞稳态的自我更新机制,在应对有毒物质胁迫时发挥着重要作用,最新的研究报道表明微囊藻毒素可诱导细胞自噬。目前,微囊藻毒素诱导细胞自噬的研究,主要以肝细胞、肾细胞、性腺细胞及神经细胞为研究对象。本文综述了微囊藻毒素对上述细胞自噬诱导的研究进展,且从氧化应激途径和内质网应激途径探讨微囊藻毒素诱导细胞自噬的机制,并对今后研究方向进行了展望,可为全面剖析微囊藻毒素的毒性机理以及自噬在其中发挥的具体作用提供参考。

English Abstract

参考文献 (66)

目录

/

返回文章
返回