铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展

何莹, 楚梦玮, 刘洋, 刘若晴, 段文焱, 仇浩. 铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展[J]. 生态毒理学报, 2020, 15(4): 56-65. doi: 10.7524/AJE.1673-5897.20190710002
引用本文: 何莹, 楚梦玮, 刘洋, 刘若晴, 段文焱, 仇浩. 铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展[J]. 生态毒理学报, 2020, 15(4): 56-65. doi: 10.7524/AJE.1673-5897.20190710002
He Ying, Chu Mengwei, Liu Yang, Liu Ruoqing, Duan Wenyan, Qiu Hao. Toxicity and the Underlying Mechanisms of Copper and Copper Oxide Nanoparticles to Duckweed and Algae: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 56-65. doi: 10.7524/AJE.1673-5897.20190710002
Citation: He Ying, Chu Mengwei, Liu Yang, Liu Ruoqing, Duan Wenyan, Qiu Hao. Toxicity and the Underlying Mechanisms of Copper and Copper Oxide Nanoparticles to Duckweed and Algae: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 56-65. doi: 10.7524/AJE.1673-5897.20190710002

铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展

    作者简介: 何莹(1995-),女,硕士研究生,研究方向为氧化铜纳米颗粒的环境行为,E-mail:695348081@qq.com
    通讯作者: 刘洋, E-mail: minipig6@163.com
  • 基金项目:

    国家自然科学基金青年项目(41703111);国家自然科学基金地区科学基金资助项目(41967039);昆明理工大学人培项目(KKSY201622012);云南省中青年学术和科技带头人后备人才项目(2018HB008)

  • 中图分类号: X171.5

Toxicity and the Underlying Mechanisms of Copper and Copper Oxide Nanoparticles to Duckweed and Algae: A Review

    Corresponding author: Liu Yang, minipig6@163.com
  • Fund Project:
  • 摘要: 由于大量的生产和使用,铜及氧化铜纳米颗粒不可避免地被排放到环境当中。水生植物属于生态系统的初级生产者,纳米颗粒对其造成的损伤及在其体内的积累很可能会通过食物链或食物网进行传递,从而威胁生态系统乃至人类健康。因此,本文就现有研究中铜及氧化铜纳米颗粒对2类重要水生植物(即浮萍、藻类)的毒性效应及致毒机理进行了总结。通过分析发现纳米颗粒的浓度、粒径以及暴露体系的pH值、溶解性有机质、温度和紫外线等环境因素均能影响铜及氧化铜纳米颗粒的毒性效应。据此提出今后相关研究中需更加关注水生植物对铜、氧化铜纳米颗粒及Cu2+的吸收及积累情况,以及区分纳米颗粒本身及Cu2+的毒性贡献的重要性,这有助于深入了解铜及氧化铜纳米颗粒对浮萍、藻类的致毒机理。
  • 加载中
  • 翟秀静, 张楠. 纳米金属材料的研究进展[J]. 材料导报, 1999, 13(6):22-24

    Qu X J, Zhang N. Research development of nanometer metal materials[J]. Materials Review, 1999, 13(6):22-24(in Chinese)

    李在元, 刘海英, 宫泮伟, 等. 纳米铜粉研究进展[J]. 有色矿冶, 2004, 20(3):40-43

    Li Z Y, Liu H Y, Gong P W, et al. Advance on study of Cu nano-powders[J]. Non-ferrous Mining and Metallurgy, 2004, 20(3):40-43(in Chinese)

    杨慧, 刘康云, 刘志宏. 氧化铜纳米片及其自组装球状纳米结构的制备及催化作用[J]. 化学研究与应用, 2009, 21(12):1662-1666

    Yang H, Liu K Y, Liu Z H.Preparation characterization and catalysis of CuO nanoflakes and ball-like nanostructures self-assembly from nanoflakes[J]. Chemical Research and Application, 2009, 21(12):1662-1666(in Chinese)

    Meesters J A J, Quik J T K, Koelmans A A, et al. Multimedia environmental fate and speciation of engineered nanoparticles:A probabilistic modeling approach[J]. Environmental Science Nano, 2016, 3:715-727
    吕琨淼. 人工合成氧化铜纳米颗粒对浮萍的影响:毒性效应、吸收方式和分布规律[D] 青岛:中国海洋大学, 2013:1-25 Lv K M. Impact of copper oxide engineered nanoparticles on Lemna minor:Toxicity, uptake and distribution[D]. Qingdao:Ocean University of China, 2013:1

    -25(in Chinese)

    李曼璐, 姜玥璐. 人工纳米颗粒在水体中的行为及其对浮游植物的影响[J]. 环境科学, 2015, 36(1):365-372

    Li M L, Jiang Y L. Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton[J]. Environmental Science, 2015, 36(1):365-372(in Chinese)

    潘义宏, 王宏斌, 谷兆萍, 等. 大型水生植物对重金属的富集与转移[J]. 生态学报, 2010, 30(23):6430-6441

    Pan Y H, Wang H B, Gu Z P, et al. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010, 30(23):6430-6441(in Chinese)

    李芳芳, 潘容, 张偲, 等. 纳米铜粉对中肋骨条藻的毒性效应[J]. 中国环境科学, 2015, 35(9):2874-2880

    Li F F, Pan R, Zhang S, et al. Inhibition effects of copper nanoparticles on the growth of Skeletonema costatum[J]. China Environmental Science, 2015, 35(9):2874-2880(in Chinese)

    Song L. Towards understanding the toxicity of copper nanoparticles in aquatic ecosystems[D]. Leiden:Leiden University, 2015:21-27
    高嫄. 纳米TiO2、纳米CuO对青萍生长影响及其机理探讨[D]. 淄博:山东理工大学, 2012:15-38 Gao Y. Effect and mechanism of TiO2and CuO nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology, 2012

    :15-38(in Chinese)

    Oukarroum A, Barhoumi L, Pirastru L, et al. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba[J]. Environmental Toxicology and Chemistry, 2013, 32(4):902-907
    Adegboyega N F, Sharma V K, Cizmas L, et al. UV light induces Ag nanoparticle formation:Roles of natural organic matter, iron, and oxygen[J]. Environmental Chemistry Letters, 2016, 14(3):353-357
    吴婷婷. 重金属Zn2+和As5+对水花生愈伤组织的毒害机制研究[D]. 南京:南京师范大学, 2011:36-40
    宋志慧, 黄国兰. 浮萍在水生态毒理学中的应用[J]. 环境科学与技术, 2005, 28(1):94-96

    Song Z H, Huang G L. Application of duckweed in ecotoxicology[J]. Environmental Science and Technology, 2005, 28(1):94-96(in Chinese)

    Koce J D. Effects of exposure to nano and bulk sized TiO2 and CuO in Lemna minor[J]. Plant Physiology and Biochemistry, 2017, 119:43-49
    Shi J, Abid A D, Kennedy I M, et al. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution[J]. Environmental Pollution, 2011, 159(2011):1277-1282
    Lalau C M, Mohedano R D, Schmidt E C, et al. Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata[J]. Protoplasma, 2015, 252:221-229
    Song L, Vijver M G, Peijnenburg W J G M. Comparative toxicity of copper nanoparticles across three Lemnaceae species[J]. Science of the Total Environment, 2015, 518-519(2015):217-224
    Sendra M, Yeste M P, Gatica J M, et al. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum)[J]. Chemosphere, 2017, 179(2017):279-289
    张宁, 金星龙, 李晓, 等. 人工纳米材料对藻类的毒性效应研究进展[J]. 安徽农业科学, 2011, 39(10):6000-6003

    Zhang N, Jin X L, Li X, et al. Progress of toxic effects of artificial nano materials on alga[J]. Journal of Anhui Agriculture Science, 2011, 39(10):6000-6003(in Chinese)

    齐金秋. 纳米氧化铜对莱茵衣藻的胁迫效应研究[D]. 泰安:山东农业大学, 2016:32-49 Qi J Q. Stress effects of nano copper oxide on Chlamydomonas reinhardtii[D]. Taian:Shandong Agricultural University, 2016:32

    -49(in Chinese)

    Wan J K, Chu W L, Kok Y Y, et al. Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella[J]. Journal of Applied Phycology, 2018, 30:3153-3165
    王丽艳. 纳米CuO对小球藻的毒性效应研究[D]. 青岛:中国海洋大学, 2013:32-50 Wang L Y. Toxic effects of nano-CuO on Chlorella sp.[D]. Qingdao:Ocean University of China, 2013:32

    -50(in Chinese)

    徐勤松, 施国新, 王学, 等. 镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究[J]. 水生生物学报, 2006, 30(1):107-112

    Xu Q S, Shi G X, Wang X, et al. Generation of active oxygen and change of antioxidant enzyme activity in Hydrilla verticillata under Cd, Cu and Zn stress[J]. Acta Hydrobiologica Sinica, 2006, 30(1):107-112(in Chinese)

    Money N P. Measurement of pore size in the hyphal cell wall of Achlya bisexualis[J]. Experimental Mycology, 1990, 14(3):234-242
    Wang Y, Ding L, Yao C, et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms[J]. Science China Materials, 2017, 60(2):93-108
    Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17:372-386
    李玥. 镉、铜、锌对四种水生植物的毒性效应[D]. 济南:东北师范大学, 2007:2-40 Li Y. Toxicological effects on four aquatic plants by Cd, Cu, Zn[D]. Jinan:Northeast Normal University, 2007:2

    -40(in Chinese)

    侯文华, 宋关玲, 汪群慧, 等. 3种重金属对青萍毒害的研究[J]. 环境科学研究, 2004, 17:40-44 Hou W H, Song G L, Wang Q H, et al. Toxic effect of three kinds of heavy metals on Lemna minor[J]. Research of Environmental Sciences, 2004

    , 17:40-44(in Chinese)

    Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45:6032-6040
    Lu D, Liu Q, Zhang T, et al. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles[J]. Nature Nanotechnology, 2016, 11:682-686
    Song L, Connolly M, Fern á ndez-Cruz M L, et al. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines[J]. Nanotoxicology, 2013, 8(4):383-393
    Backhaus T, Scholze S, Grimme L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[J]. Aquatic Toxicology, 2000, 49:49-61
    Rippner D A, Green P G, Young T M, et al. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems[J]. Environmental Pollution, 2018, 234:692-698
    崔静, 袁旭音, 刘泉, 等. 环境水体中纳米氧化铜对金鱼藻的毒性效应研究[J]. 农业环境科学学报, 2013, 32(5):910-915

    Cui J, Yuan X Y, Liu Q, et al. Toxic effects of low concentration copper oxide nanoparticles on Ceratophyllum demersum in the aquatic environment[J]. Journal of Agro-Environment Science, 2013, 32(5):910-915(in Chinese)

    Porter A E, Gass M, Muller K, et al. Direct imaging of single-walled carbon nanotubes in cells[J]. Nature Nanotechnology, 2007, 2(11):713-717
    王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418

    Wang Z Y, Zhao J, Li N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418(in Chinese)

    黄健, 唐学玺, 宫相忠, 等. 低浓度毒物对海洋微藻生长刺激效应的初步研究[J]. 应用生态学报, 2002, 13(11):1516-1518

    Huang J, Tang X X, Gong X Z, et al. Preliminary study on the growth stimulation of marine microalgae stimulated by low level of toxicant[J]. Chinese Journal of Applied Ecology, 2002, 13(11):1516-1518(in Chinese)

    Zhang C C, Liu X Y, Wang Z Y. Toxicity of copper oxide nanoparticles on the green algae:Chlorella pyrenoidosa[J]. Applied Mechanics and Materials, 2013, 328:758-762
    Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87:1388-1394
    王朝晖, 尹伊伟, 陈善文, 等. 丙烯酸及丙烯酯对水生生物的急性毒性[J]. 暨南大学学报:自然科学版, 2002, 23:75-80 Wang Z H, Yin Y W, Chen S W, et al. Study on acute toxicity of arcrylic acid and its esters to aquatic organisms[J]. Journal of Jinan University:Natural Science, 2002

    , 23:75-80(in Chinese)

    周春祥, 郎玉农, 白桦. 水生植物净化污水与生态开发利用[J]. 农业资源与环境学报, 2009, 26:6-9
    Wang Z Y, Zhao J, Xing B S. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter[J]. Environmental Science:Nano, 2016, 3:240-255
    钮东方, 徐思涵, 李辉成, 等. 可溶性铜盐配合物Cu(OH)42-氧化扁桃酸制备香兰素[J]. 精细化工, 2014, 31:1372-1375 Niu D F, Xu S H, Li H C, et al. Oxidation of mandelic acid to prepare vanillin by a soluble Cu(OH)4

    2- complex[J]. Fine Chemicals, 2014, 31:1372-1375(in Chinese)

    龙爱民, 潘波, 徐福留, 等. 不同条件下鲤鱼鳃部对高岭土颗粒吸附态铜的吸收[J]. 生态学报, 2002, 22(10):1640-1644

    Long A M, Pan B, Xiu F L, et al. Uptake of copper adsorbed on kaolin of various size by fish (Cyprinus carpio) gills at various pH levels[J]. Acta Ecologica Sinica, 2002, 22(10):1640-1644(in Chinese)

    Miao L, Wang C, Hou J, et al. Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton[J]. Environmental Science and Pollution Research, 2015, 22:7696-7704
    Melegari S P, Perreault F, Costa R H R, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2013, 142-143:431-440
    张琛琛. 溶解性有机质影响下人工合成氧化铜纳米颗粒对蛋白核小球藻的致毒机制[D]. 青岛:中国海洋大学, 2013:17-26 Zhang C C. Toxicity mechanism of copper oxide engineered nanoparticles in Chlorella pyrenoidosa effected by dissoved organic matter[D]. Qingdao:Ocean University of China, 2013:17

    -26(in Chinese)

    王龙飞. 天然有机质与金属离子/纳米颗粒的相互作用及其对膜污染过程的影响[D]. 合肥:中国科学技术大学, 2016:71-89 Wang L F. Interactions between natural organic matter (NOM) and metal ions/nanoparticles and their effects in membrane fouling process[D]. Hefei:University of Science and Technology of China, 2016:71

    -89(in Chinese)

    Mudunkotuwa I A, Pettibone J M, Grassian V H. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials[J]. Environmental Science & Technology, 2012, 46:7001-7010
    李静. 溶解有机质影响下CuO纳米颗粒对铜绿微囊藻的致毒机制[D]. 青岛:中国海洋大学, 2011:19-46 Li J. The toxic mechanism of CuO nanoparticles to Microcystis aeruginosa as affected by dissolved organic matter[D]. Qingdao:Ocean University of China, 2011:19

    -46(in Chinese)

    赵建, 曹雪松, 代燕辉, 等. 溶解有机质影响下氧化铜纳米颗粒对藻细胞的致毒机制[C]. 武汉:中国毒理学会第七次全国毒理学大会暨第八届湖北科技论坛论文集, 2015
    毕冉, 周顺桂, 袁田, 等. 水溶性有机物电子转移能力及其生态效应[J]. 生态学报, 2013, 33(1):45-52

    Bi R, Zhou S G, Yuan T, et al. Electron transfer capacities of dissolved organic matter and its ecological effects[J]. Acta Ecologica Sinica, 2013,33(1):45-52(in Chinese)

    Zhao J, Wang Z, Dai Y, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47:4169-4178
    覃宝利, 杨州, 张民. 温度波动对浮游藻类生长及多糖组成的影响[J]. 湖泊科学, 2014, 26:432-440 Qin B L, Yang Z, Zhang M. The effect of temperature fluctuation on the growth and polysaccharide composition of phytoplankton[J]. Journal of Lake Sciences, 2014

    , 26:432-440(in Chinese)

    向华. 铜离子胁迫对4种水生植物生理生化特性的影响[D]. 长沙:湖南农业大学, 2010:9-32 Xiang H. Physiological and biochemical characteristics effects of four aquatic plants under Cu2+ stress[J]. Changsha:Hunan Agricultural University, 2010

    :9-32(in Chinese)

    陈树元. 太阳紫外线(UV)辐射对植物的影响[J]. 环境科学, 1992, 13(6):52-56

    Chen S Y. Effects of solar ultraviolet radiation on plants[J]. Environmental Science, 1992, 13(6):52-56(in Chinese)

    杨志敏, 颜景义, 王传海. 紫外线辐射增加对生物的影响[J]. 生物学通报, 1995, 30:17-18
    李宏文, 张纬. 不同光照强度的紫外光对几种水生植物的过氧化氢酶(CAT)活性的影响[J]. 苏州科技大学学报:工程技术版, 1996, 9:45-48 Li H W, Zhang W. The effects of diffrent light intensity of UV on the catalase (CAT) activities of several species of aquatic plants[J]. Suzhou Institute of Urban Construction and Environmental Protection, 1996

    , 9:45-48(in Chinese)

    Regier N, Cosio C, Moos N V, et al. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii[J]. Chemosphere, 2015, 128:56-61
  • 加载中
计量
  • 文章访问数:  3789
  • HTML全文浏览数:  3789
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-10

铜及氧化铜纳米颗粒对浮萍、藻类的毒性效应及机理研究进展

    通讯作者: 刘洋, E-mail: minipig6@163.com
    作者简介: 何莹(1995-),女,硕士研究生,研究方向为氧化铜纳米颗粒的环境行为,E-mail:695348081@qq.com
  • 1. 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明 650500;
  • 2. 上海交通大学环境科学与工程学院, 上海 200240
基金项目:

国家自然科学基金青年项目(41703111);国家自然科学基金地区科学基金资助项目(41967039);昆明理工大学人培项目(KKSY201622012);云南省中青年学术和科技带头人后备人才项目(2018HB008)

摘要: 由于大量的生产和使用,铜及氧化铜纳米颗粒不可避免地被排放到环境当中。水生植物属于生态系统的初级生产者,纳米颗粒对其造成的损伤及在其体内的积累很可能会通过食物链或食物网进行传递,从而威胁生态系统乃至人类健康。因此,本文就现有研究中铜及氧化铜纳米颗粒对2类重要水生植物(即浮萍、藻类)的毒性效应及致毒机理进行了总结。通过分析发现纳米颗粒的浓度、粒径以及暴露体系的pH值、溶解性有机质、温度和紫外线等环境因素均能影响铜及氧化铜纳米颗粒的毒性效应。据此提出今后相关研究中需更加关注水生植物对铜、氧化铜纳米颗粒及Cu2+的吸收及积累情况,以及区分纳米颗粒本身及Cu2+的毒性贡献的重要性,这有助于深入了解铜及氧化铜纳米颗粒对浮萍、藻类的致毒机理。

English Abstract

参考文献 (60)

目录

/

返回文章
返回