室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节

尹晓宇, 董文静, 李嘉伟, 齐澈力木格, 于永利, 杨景峰, 董武. 室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节[J]. 生态毒理学报, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
引用本文: 尹晓宇, 董文静, 李嘉伟, 齐澈力木格, 于永利, 杨景峰, 董武. 室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节[J]. 生态毒理学报, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
Yin Xiaoyu, Dong Wenjing, Li Jiawei, Qi Chelimuge, Yu Yongli, Yang Jingfeng, Dong Wu. BDE-99 from Indoor Dust Interferes with Dio3 and Affects Thyroid Function Regulation in Zebrafish[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
Citation: Yin Xiaoyu, Dong Wenjing, Li Jiawei, Qi Chelimuge, Yu Yongli, Yang Jingfeng, Dong Wu. BDE-99 from Indoor Dust Interferes with Dio3 and Affects Thyroid Function Regulation in Zebrafish[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003

室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节

    作者简介: 尹晓宇(1994-),男,硕士研究生,研究方向为毒理学,E-mail:yinxiaoyu344@163.com
    通讯作者: 董武, E-mail: dongwu@imun.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(21567019,81360508);内蒙古民族大学特色交叉学科群建设项目(MDXK008);内蒙古自治区自然科学基金资助项目(2018MS08033);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古草原英才2020年度滚动支持(董武);内蒙古毒物监测及毒理学重点实验室开放项目(MDK2019074,MDK2019076);内蒙古民族大学研究生科研创新项目(NMDSS1860);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)

  • 中图分类号: X171.5

BDE-99 from Indoor Dust Interferes with Dio3 and Affects Thyroid Function Regulation in Zebrafish

    Corresponding author: Dong Wu, dongwu@imun.edu.cn
  • Fund Project:
  • 摘要: 多溴联苯醚(PBDEs)是一种溴化阻燃剂,在办公室和家庭的灰尘中均有检出。PBDEs会对内分泌造成干扰,主要影响甲状腺激素的调节功能。使用斑马鱼胚胎为动物模型,评价办公室和家庭灰尘萃取物以及BDE-99对斑马鱼胚胎的影响。结果显示,灰尘萃取物和BDE-99同样导致斑马鱼眼部色素降低,GC-MS检测发现灰尘中含有BDE-99和BDE-47,且BDE-99含量远高于BDE-47,通过评估BDE-99在斑马鱼体内代谢及其对甲状腺激素脱碘酶Ⅲ(Dio3)表达的影响,发现Dio3在斑马鱼胚胎原肾管部位表达,且表达量显著增加,72 hpf斑马鱼胚胎的甲状腺素含量显著降低。研究表明,BDE-99对斑马鱼胚胎早期Dio3的活性有干扰作用,并导致甲状腺素含量降低,由此可知,斑马鱼胚胎色素变化和Dio3 mRNA表达有可能作为PBDEs的生物学评价指标。
  • 加载中
  • Zezza D, Tait S, Della Salda L, et al. Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE-47, PBDE-99 and PBDE-209 on zebrafish embryos[J]. Ecotoxicology and Environmental Safety, 2019, 183:109566
    Giraudo M, Douville M, Letcher R J, et al. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate[J]. Aquatic Toxicology, 2017, 186:40-49
    Johnson-Restrepo B, Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States[J]. Chemosphere, 2009, 76(4):542-548
    Smielowska M, Zabiegala B. Matrix solid-phase dispersion (MSPD) as simple and useful sample preparation technique for determination of polybrominated diphenyl ethers (PBDEs) in dust[J]. Analytica Chimica Acta, 2019, 1084:33-42
    Bu Z, Xu X, Xu Q, et al. Indoor polybrominated diphenyl ethers in urban China:An exposure and risk assessment based on settled dust from selected urban regions[J]. Science of the Total Environment, 2020, 714:136808
    Zhu N Z, Liu L Y, Ma W L, et al. Polybrominated diphenyl ethers (PBDEs) in the indoor dust in China:Levels, spatial distribution and human exposure[J]. Ecotoxicology and Environmental Safety, 2015, 111:1-8
    Babayemi J O, Osibanjo O, Sindiku O, et al. Inventory and substance flow analysis of polybrominated diphenyl ethers in the Nigerian transport sector-end-of-life vehicles policy and management[J]. Science of the Total Environment, 2018, 25(32):31805-31818
    Huwe J K, Hakk H, Smith D J, et al. Comparative absorption and bioaccumulation of polybrominated diphenyl ethers following ingestion via dust and oil in male rats[J]. Environmental Science & Technology, 2008, 42(7):2694-2700
    Watkins D J, McClean M D, Fraser A J, et al. Associations between PBDEs in office air, dust, and surface wipes[J]. Environment International, 2013, 59:124-132
    Zhao X, Wang H, Li J, et al. The correlation between polybrominated diphenyl ethers (PBDEs) and thyroid hormones in the general population:A meta-analysis[J]. PLoS One, 2015, 10(5):e0126989
    Arkoosh M R, Van Gaest A L, Strickland S A, et al. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99[J]. Chemosphere, 2017, 171:1-8
    Qian B, Wang C, Zhao C, et al. Effects of maternal exposure to BDE209 on neuronal development and transcription of iodothyronine deiodinase in offspring mice[J]. Toxicology Mechanisms and Methods, 2019, 29(8):569-579
    Han Z, Li Y, Zhang S, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring[J]. Aquatic Toxicology, 2017, 190:46-52
    Hoffman K, Lorenzo A, Butt C M, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer:A case-control study[J]. Environment International, 2017, 107:235-242
    Stapleton H M, Misenheimer J, Hoffman K, et al. Flame retardant associations between children's handwipes and house dust[J]. Chemosphere, 2014, 116:54-60
    Fulton C A, Huff Hartz K E, Fell R D, et al. An assessment of pesticide exposures and land use of honey bees in Virginia[J]. Chemosphere, 2019, 222:489-493
    Dong W, Wang F, Fang M, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346
    康桂英, 董武, 杨景峰, 等. 对乙酰氨基酚对斑马鱼胚胎甲状腺激素相关基因表达的影响[J]. 中国药理学与毒理学杂志, 2019, 33(4):288-294

    Kang G Y, Dong W, Yang J F, et al. Effect of acetaminophen on expression of thyroid hormone related genes in zebrafish embryo[J]. Chinese Journal of Pharmacology and Toxicology, 2019, 33(4):288-294(in Chinese)

    李嘉伟, 尹晓宇, 周旖妮, 等. 五溴联苯醚(BDE-99)和羟基五溴联苯醚(5-OH-BDE-99)经由THRβ影响斑马鱼胚胎眼部色素的沉着[J]. 生态毒理学报, 2021, DOI:10.7524/AJE.1673

    -5897.20191114001 Li J W, Yin X Y, Zhou Y N, et al. BDE-99 and 5-OH-BDE-99 affect the pigmentation of the eyes of zebrafish embryos via THRβ[J]. Asian Journal of Ecotoxicology, 2021, DOI:10.7524/AJE.1673-5897.20191114001(in Chinese)

    Stapleton H M, Letcher R J, Baker J E. Debromination of polybrominated diphenyl ether congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (Cyprinus carpio)[J]. Environmental Science & Technology, 2004, 38(4):1054-1061
    Wang B L, Pang S T, Zhang X L, et al. Levels of polybrominated diphenyl ethers in settled house dust from urban dwellings with resident preschool-aged children in Nanjing, China[J]. Archives of Environmental Contamination and Toxicology, 2015, 68(1):9-19
    Li Y, Chen L, Wen Z H, et al. Characterizing distribution, sources, and potential health risk of polybrominated diphenyl ethers (PBDEs) in office environment[J]. Environmental Pollution, 2015, 198:25-31
    Zheng X, Sun R, Qiao L, et al. Flame retardants on the surface of phones and personal computers[J]. Science of the Total Environment, 2017, 609:541-545
    Lee S, Jang Y C, Kim J G, et al. Static and dynamic flow analysis of PBDEs in plastics from used and end-of-life TVs and computer monitors by life cycle in Korea[J]. Science of the Total Environment, 2015, 506-507:76-85
    Carlsson G, Kulkarni P, Larsson P, et al. Distribution of BDE-99 and effects on metamorphosis of BDE-99 and -47 after oral exposure in Xenopus tropicalis[J]. Aquatic Toxicology, 2007, 84(1):71-79
    Yoo J H, Takeuchi T, Tagawa M, et al. Effect of thyroid hormones on the stage-specific pigmentation of the Japanese flounder Paralichthys olivaceus[J]. Zoological Science, 2000, 17(8):1101-1106
    Dong W, Macaulay L J, Kwok K W, et al. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish:A tool for examining OH-BDE toxicity to early life stages[J]. Aquatic Toxicology, 2013, 132-133:190-199
    Wang C, Zhu J, Zhang Z, et al. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases[J]. Chemosphere, 2020, 246:125774
  • 加载中
计量
  • 文章访问数:  1631
  • HTML全文浏览数:  1631
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-03-02
尹晓宇, 董文静, 李嘉伟, 齐澈力木格, 于永利, 杨景峰, 董武. 室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节[J]. 生态毒理学报, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
引用本文: 尹晓宇, 董文静, 李嘉伟, 齐澈力木格, 于永利, 杨景峰, 董武. 室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节[J]. 生态毒理学报, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
Yin Xiaoyu, Dong Wenjing, Li Jiawei, Qi Chelimuge, Yu Yongli, Yang Jingfeng, Dong Wu. BDE-99 from Indoor Dust Interferes with Dio3 and Affects Thyroid Function Regulation in Zebrafish[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003
Citation: Yin Xiaoyu, Dong Wenjing, Li Jiawei, Qi Chelimuge, Yu Yongli, Yang Jingfeng, Dong Wu. BDE-99 from Indoor Dust Interferes with Dio3 and Affects Thyroid Function Regulation in Zebrafish[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 219-226. doi: 10.7524/AJE.1673-5897.20200302003

室内灰尘中五溴联苯醚(BDE-99)干扰Dio3影响斑马鱼甲状腺功能调节

    通讯作者: 董武, E-mail: dongwu@imun.edu.cn
    作者简介: 尹晓宇(1994-),男,硕士研究生,研究方向为毒理学,E-mail:yinxiaoyu344@163.com
  • 内蒙古民族大学动物科学技术学院, 内蒙古自治区毒物监控及毒理学重点实验室, 通辽 028000
基金项目:

国家自然科学基金资助项目(21567019,81360508);内蒙古民族大学特色交叉学科群建设项目(MDXK008);内蒙古自治区自然科学基金资助项目(2018MS08033);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古草原英才2020年度滚动支持(董武);内蒙古毒物监测及毒理学重点实验室开放项目(MDK2019074,MDK2019076);内蒙古民族大学研究生科研创新项目(NMDSS1860);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)

摘要: 多溴联苯醚(PBDEs)是一种溴化阻燃剂,在办公室和家庭的灰尘中均有检出。PBDEs会对内分泌造成干扰,主要影响甲状腺激素的调节功能。使用斑马鱼胚胎为动物模型,评价办公室和家庭灰尘萃取物以及BDE-99对斑马鱼胚胎的影响。结果显示,灰尘萃取物和BDE-99同样导致斑马鱼眼部色素降低,GC-MS检测发现灰尘中含有BDE-99和BDE-47,且BDE-99含量远高于BDE-47,通过评估BDE-99在斑马鱼体内代谢及其对甲状腺激素脱碘酶Ⅲ(Dio3)表达的影响,发现Dio3在斑马鱼胚胎原肾管部位表达,且表达量显著增加,72 hpf斑马鱼胚胎的甲状腺素含量显著降低。研究表明,BDE-99对斑马鱼胚胎早期Dio3的活性有干扰作用,并导致甲状腺素含量降低,由此可知,斑马鱼胚胎色素变化和Dio3 mRNA表达有可能作为PBDEs的生物学评价指标。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回