纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响

陶一凡, 张小强, 李琪, 孙腾腾, 崔丹丹. 纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响[J]. 生态毒理学报, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
引用本文: 陶一凡, 张小强, 李琪, 孙腾腾, 崔丹丹. 纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响[J]. 生态毒理学报, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
Tao Yifan, Zhang Xiaoqiang, Li Qi, Sun Tengteng, Cui Dandan. Effects of Nano-titanium Dioxide on Notch Signaling Pathway and Secretion of Inflammatory Factors in Microglia[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
Citation: Tao Yifan, Zhang Xiaoqiang, Li Qi, Sun Tengteng, Cui Dandan. Effects of Nano-titanium Dioxide on Notch Signaling Pathway and Secretion of Inflammatory Factors in Microglia[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001

纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响

    作者简介: 陶一凡(1995-),男,硕士研究生,研究方向为食品毒理学和纳米毒理学,E-mail:670581814@qq.com
    通讯作者: 张小强, E-mail: zhangxq7843@126.com
  • 基金项目:

    江苏省普通高校研究生科研创新计划资助项目(SJZZ16_0034)

  • 中图分类号: X171.5

Effects of Nano-titanium Dioxide on Notch Signaling Pathway and Secretion of Inflammatory Factors in Microglia

    Corresponding author: Zhang Xiaoqiang, zhangxq7843@126.com
  • Fund Project:
  • 摘要: 由于纳米材料的广泛应用及其可能存在的生物安全性风险,本研究探讨了纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响。以不同浓度的纳米二氧化钛染毒小胶质细胞,MTT法测定细胞活力,乳酸脱氢酶(LDH)检测试剂盒测定细胞培养液上清液LDH活性,ELISA法测定细胞培养液上清液肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)的分泌水平,Western Blot法检测Notch-1和Hes-1的蛋白表达水平。结果表明,与对照组相比,纳米二氧化钛40.0 μg·mL-1和50.0 μg·mL-1暴露组细胞活力显著降低;纳米二氧化钛20.0、30.0和40.0 μg·mL-1暴露组LDH水平明显升高;纳米二氧化钛15.0、20.0、30.0和40.0 μg·mL-1暴露组TNF-α、IL-1β和IL-6分泌水平升高;纳米二氧化钛20.0、30.0和40.0 μg·mL-1暴露组Notch-1及Hes-1蛋白表达水平升高。研究表明,纳米二氧化钛暴露导致细胞活力降低,破坏细胞膜的完整性,炎症因子及Notch信号通路相关蛋白Notch-1和Hes-1的表达水平升高。
  • 加载中
  • Wang L Z, Sasaki T. Titanium oxide nanosheets:Graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19):9455-9486
    Venkatasubbu G D, Baskar R, Anusuya T, et al. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens[J]. Colloids and Surfaces B:Biointerfaces, 2016, 148:600-606
    Wang Y N, Ma J Z, Xu Q N, et al. Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings[J]. Materials & Design, 2017, 113:240-245
    Kubacka A, Serrano C, Ferrer M, et al. High-performance dual-action polymer-TiO2 nanocomposite films via melting processing[J]. Nano Letters, 2007, 7(8):2529-2534
    赵秋艳, 李汴生. 新型铁营养强化剂——超微细元素铁粉[J]. 食品与发酵工业, 2001, 27(6):67-69

    Zhao Q Y, Li B S. A new iron dietary supplement-ultramicro iron powder[J]. Food and Fermentation Industries, 2001, 27(6):67-69(in Chinese)

    Kumar P, Mahajan P, Kaur R, et al. Nanotechnology and its challenges in the food sector:A review[J]. Materials Today Chemistry, 2020, 17:100332
    Lim J H, Bae D, Fong A. Titanium dioxide in food products:Quantitative analysis using ICP-MS and Raman spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2018, 66(51):13533-13540
    Grissa I, Guezguez S, Ezzi L, et al. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain[J]. Environmental Science and Pollution Research, 2016, 23(20):20205-20213
    Long T C, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro[J]. Environmental Health Perspectives, 2007, 115(11):1631-1637
    Song B, Liu J, Feng X L, et al. A review on potential neurotoxicity of titanium dioxide nanoparticles[J]. Nanoscale Research Letters, 2015, 10(1):1042
    Chen I C, Hsiao I L, Lin H C, et al. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability[J]. Environmental Toxicology and Pharmacology, 2016, 47:108-118
    Butovsky O, Weiner H L. Microglial signatures and their role in health and disease[J]. Nature Reviews Neuroscience, 2018, 19(10):622-635
    Kettenmann H, Hanisch U K, Noda M, et al. Physiology of microglia[J]. Physiological Reviews, 2011, 91(2):461-553
    Cheng M, Yang L, Dong Z P, et al. Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells[J]. Journal of Cellular and Molecular Medicine, 2019, 23(7):4795-4807
    Rihane N, Nury T, M'rad I, et al. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles:Toxicity and cellular responses[J]. Environmental Science and Pollution Research, 2016, 23(10):9690-9699
    Valentini X, Deneufbourg P, Paci P, et al. Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats[J]. Toxicology Reports, 2018, 5:878-889
    Wang Y C, He F, Feng F, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses[J]. Cancer Research, 2010, 70(12):4840-4849
    Wu F, Luo T, Mei Y W, et al. Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling[J]. Journal of Neuroimmunology, 2018, 316:56-64
    Grandbarbe L, Michelucci A, Heurtaux T, et al. Notch signaling modulates the activation of microglial cells[J]. Glia, 2007, 55(15):1519-1530
    Song B, Zhou T, Yang W L, et al. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity[J]. Environmental Toxicology and Pharmacology, 2016, 48:130-140
    Zhang R, Niu Y J, Li Y W, et al. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice[J]. Environmental Toxicology and Pharmacology, 2010, 30(1):52-60
    Hughes V. Microglia:The constant gardeners[J]. Nature, 2012, 485(7400):570-572
    Cao Q, Lu J, Kaur C, et al. Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells[J]. Glia, 2008, 56(11):1224-1237
  • 加载中
计量
  • 文章访问数:  1642
  • HTML全文浏览数:  1642
  • PDF下载数:  59
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-12-30
陶一凡, 张小强, 李琪, 孙腾腾, 崔丹丹. 纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响[J]. 生态毒理学报, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
引用本文: 陶一凡, 张小强, 李琪, 孙腾腾, 崔丹丹. 纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响[J]. 生态毒理学报, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
Tao Yifan, Zhang Xiaoqiang, Li Qi, Sun Tengteng, Cui Dandan. Effects of Nano-titanium Dioxide on Notch Signaling Pathway and Secretion of Inflammatory Factors in Microglia[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001
Citation: Tao Yifan, Zhang Xiaoqiang, Li Qi, Sun Tengteng, Cui Dandan. Effects of Nano-titanium Dioxide on Notch Signaling Pathway and Secretion of Inflammatory Factors in Microglia[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 212-218. doi: 10.7524/AJE.1673-5897.20201230001

纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响

    通讯作者: 张小强, E-mail: zhangxq7843@126.com
    作者简介: 陶一凡(1995-),男,硕士研究生,研究方向为食品毒理学和纳米毒理学,E-mail:670581814@qq.com
  • 环境医学工程教育部重点实验室, 东南大学公共卫生学院, 南京 210000
基金项目:

江苏省普通高校研究生科研创新计划资助项目(SJZZ16_0034)

摘要: 由于纳米材料的广泛应用及其可能存在的生物安全性风险,本研究探讨了纳米二氧化钛对小胶质细胞Notch信号通路及炎症因子分泌水平的影响。以不同浓度的纳米二氧化钛染毒小胶质细胞,MTT法测定细胞活力,乳酸脱氢酶(LDH)检测试剂盒测定细胞培养液上清液LDH活性,ELISA法测定细胞培养液上清液肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)的分泌水平,Western Blot法检测Notch-1和Hes-1的蛋白表达水平。结果表明,与对照组相比,纳米二氧化钛40.0 μg·mL-1和50.0 μg·mL-1暴露组细胞活力显著降低;纳米二氧化钛20.0、30.0和40.0 μg·mL-1暴露组LDH水平明显升高;纳米二氧化钛15.0、20.0、30.0和40.0 μg·mL-1暴露组TNF-α、IL-1β和IL-6分泌水平升高;纳米二氧化钛20.0、30.0和40.0 μg·mL-1暴露组Notch-1及Hes-1蛋白表达水平升高。研究表明,纳米二氧化钛暴露导致细胞活力降低,破坏细胞膜的完整性,炎症因子及Notch信号通路相关蛋白Notch-1和Hes-1的表达水平升高。

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回