新型全氟和多氟烷醚类化合物的环境分布与毒性研究进展
Research Progress in Environmental Distribution and Toxicity of Per- and Polyfluoroalkyl Ether Substances
-
摘要: 全氟和多氟烷基化合物(PFASs)是一类应用广泛的有机物,传统PFASs的代表性化合物包括全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)等。PFOS和PFOA因环境持久性、生物累积性和多种潜在毒性已被《斯德哥尔摩国际公约》列入禁用和限用名录,从而催生了全氟和多氟烷醚类化合物(PFPEs)等替代品的研发应用。近年来,多种PFPEs替代品在人体及饮用水中被频繁检出,引起环境科学界对其安全性的关注。笔者综述了PFPEs的主要类型、环境介质分布和生物毒性等的最新研究进展,并展望了其安全性研究中有待解决的问题。
-
关键词:
- 全氟和多氟烷醚类化合物 /
- 全氟醚羧酸 /
- 全氟醚磺酸 /
- 生物蓄积性 /
- 毒性效应
Abstract: Per- and polyfluoroalkyl substances (PFASs) are widely used organic compounds. Representative legacy PFASs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Due to its persistence, bioaccumulation potential, and potential toxic effects, PFOS and PFOA usage is banned or restricted by the Stockholm International Convention. This has led to the invention and application of PFAS alternatives, such as perfluoroether carboxylic and sulfonic acids (PFECAs and PFESAs). In recent years, a variety of PFECAs and PFESAs have been frequently detected in human serum and drinking water. The safety of PFECAs and PFESAs has been of increasing environmental concern. In this paper, we summarized research progress on main types of PFECAs and PFESAs, including their environmental matrix distribution and toxicity studies on laboratory animals. We also issued perspective views on the research of PFAS alternatives.-
Key words:
- per- and polyfluoroalkyl ether substances /
- PFECAs /
- PFESAs /
- bioaccumulation /
- toxicity
-
-
Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids:A review of monitoring and toxicological findings[J]. Toxicological Sciences, 2007, 99(2):366-394 Giesy J P, Kannan K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7):146A-152A Wang Z, DeWitt J C, Higgins C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)[J]. Environmental Science & Technology, 2017, 51(5):2508-2518 Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541 盛南, 潘奕陶, 戴家银. 新型全氟及多氟烷基化合物生态毒理研究进展[J]. 安徽大学学报:自然科学版, 2018, 42(6):3-13 Sheng N, Pan Y T, Dai J Y, et al. Current research status of several emerging per- and polyfluoroalkyl substances (PFASs)[J]. Journal of Anhui University:Natural Science Edition, 2018, 42(6):3-13(in Chinese)
周秀鹃, 盛南, 王建设. 全氟和多氟化合物替代品的研究进展[J]. 生态毒理学报, 2017, 12(3):3-12 Zhou X J, Sheng N, Wang J S, et al. The current research status of several kinds of fluorinated alternatives[J]. Asian Journal of Ecotoxicology, 2017, 12(3):3-12(in Chinese)
DeWitt J C. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances[M]. New York:Humana Press, 2015:451-477 Gordon S C. Toxicological evaluation of ammonium 4,8-dioxa-3H-per-fluorononanoate, a new emulsifier to replace ammonium perfluorooctanoate in fluoropolymer manufacturing[J]. Regulatory Toxicology and Pharmacology, 2011, 59(1):64-80 江桂斌, 宋茂勇. 典型污染物的环境暴露与健康效应[M]. 北京:科学出版社, 2020:348-364 Jiang G B, Song M Y. Environmental Exposure and Health Effects[M]. Beijing:Science Press, 2020:348 -364(in Chinese)
Munoz G, Liu J, Vo Duy S, et al. Analysis of F-53B, Gen-X, ADONA, and emerging fluoroalkylether substances in environmental and biomonitoring samples:A review[J]. Trends in Environmental Analytical Chemistry, 2019, 23:e00066 Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment:A review of current literature[J]. Water Research, 2017, 124:482-495 张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展[J]. 生态毒理学报, 2019, 14(3):30-53 Zhang M, Lou Q T, Shao Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment[J]. Asian Journal of Ecotoxicology, 2019, 14(3):30-53(in Chinese)
Strynar M, Dagnino S, McMahen R, et al. Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS)[J]. Environmental Science & Technology, 2015, 49(19):11622-11630 Heydebreck F, Tang J, Xie Z, et al. Alternative and legacy perfluoroalkyl substances:Differences between European and Chinese river/estuary systems[J]. Environmental Science & Technology, 2015, 49(14):8386-8395 Pan Y, Zhang H, Cui Q, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science & Technology, 2018, 52(14):7621-7629 Pan Y T, Zhang H X, Cui Q Q, et al. First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid:An emerging concern[J]. Environmental Science & Technology, 2017, 51(17):9553-9560 Song X, Vestergren R, Shi Y, et al. Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China[J]. Environmental Science & Technology, 2018, 52(17):9694-9703 Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity, persistence, and presence in the environment[J]. Environmental Science & Technology, 2013, 47(18):10163-10170 Wang T, Vestergren R, Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers[J]. Environmental Science & Technology, 2016, 50(21):11584-11592 Ruan T, Lin Y, Wang T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China[J]. Environmental Science & Technology, 2015, 49(11):6519-6527 Wang W, Maimaiti A, Shi H, et al. Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins[J]. Chemical Engineering Journal, 2019, 364(1):132-138 Huang P J, Hwangbo M, Chen Z, et al. Reusable functionalized hydrogel sorbents for removing long- and short-chain perfluoroalkyl acids (PFAAs) and GenX from aqueous solution[J]. ACS Omega, 2018, 3(12):17447-17455 Sun M, Arevalo E, Strynar M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear River watershed of North Carolina[J]. Environmental Science & Technology Letters, 2016, 3(12):415-419 Cui Q, Pan Y, Zhang H, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus)[J]. Environmental Science & Technology, 2018, 52(3):982-990 Gebbink W A, Bossi R, Rigét F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 2016, 144:2384-2391 Thompson C M, Fitch S E, Ring C, et al. Development of an oral reference dose for the perfluorinated compound GenX[J]. Journal of Applied Toxicology, 2019, 39(9):1-16 Hogue C. The hunt is on for GenX chemicals in people:Analysis of North Carolina residents' blood for Chemours PFAS yields surprises. Chemical & Engineering News, 2019, 97 Pan Y, Zhu Y, Zheng T, et al. Novel chlorinated polyfluorinated ether sulfonates and legacy per-/polyfluoroalkyl substances:Placental transfer and relationship with serum albumin and glomerular filtration rate[J]. Environmental Science & Technology, 2017, 51(1):634-644 Shi Y, Vestergren R, Xu L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science & Technology, 2016, 50(5):2396-2404 Sheng N, Cui R N, Wang J H, et al. Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein[J]. Archives of Toxicology, 2018, 92(1):359-369 Gannon S A, Fasano W J, Mawn M P, et al. Absorption,distribution, metabolism, excretion, and kinetics of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid ammonium salt following a single dose in rat, mouse, and cynomolgus monkey[J]. Toxicology, 2016, 340:1-9 Rushing B R, Hu Q, Franklin J N, et al. Evaluation of the immunomodulatory effects of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in C57BL/6 mice[J]. Toxicological Sciences, 2017, 156(1):179-189 Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008 Haas M C. A 28-day oral (gavage) toxicity study of H-28397 in mice with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2008 MacKenzie S A. H-28548:Subchronic toxicity 90-day gavage study in mice[R]. Newark, DE:E.I. du Pont de Nemours and Company, Dupont Haskell Global Centers for Health & Environmental Sciences, 2010 Haas M C. A 90-day oral (gavage) toxicity study of H-28548 in rats with a 28-day recovery (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2009 Guo H, Wang J, Yao J, et al. Comparative hepatotoxicity of novel PFOA alternatives (perfluoropolyether carboxylic acids) on male mice[J]. Environmental Science & Technology, 2019,53(7):3929-3937 Sheng N, Pan Y, Guo Y, et al. Hepatotoxic effects of hexafluoropropylene oxide trimer acid (HFPO-TA), a novel perfluorooctanoic acid (PFOA) alternative, on mice[J]. Environmental Science & Technology, 2018, 52(14):8005-8015 Edwards T L. An oral (gavage) reproduction/developmental toxicity screening study of H-28548 in mice (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010 Edwards T L. An oral (gavage) prenatal developmental toxicity study of H-28548 in rats (DuPont)[R]. Ashland, OH:WIL Research Laboratories, 2010 Shi G, Cui Q, Pan Y, et al. 6:2 chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos[J]. Aquatic Toxicology, 2017, 185:67-75 Wang J, Shi G, Yao J, et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption[J]. Environment International, 2020, 134:105317 -

计量
- 文章访问数: 5781
- HTML全文浏览数: 5781
- PDF下载数: 285
- 施引文献: 0