黑磷纳米片应用及生物毒性研究进展

向思靓, 曾洁, 阮锋凯, 左正宏, 何承勇. 黑磷纳米片应用及生物毒性研究进展[J]. 生态毒理学报, 2021, 16(3): 115-127. doi: 10.7524/AJE.1673-5897.20200503001
引用本文: 向思靓, 曾洁, 阮锋凯, 左正宏, 何承勇. 黑磷纳米片应用及生物毒性研究进展[J]. 生态毒理学报, 2021, 16(3): 115-127. doi: 10.7524/AJE.1673-5897.20200503001
Xiang Siliang, Zeng Jie, Ruan Fengkai, Zuo Zhenghong, He Chengyong. Advances in Application and Biotoxicity of Black Phosphorus Nanosheet[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 115-127. doi: 10.7524/AJE.1673-5897.20200503001
Citation: Xiang Siliang, Zeng Jie, Ruan Fengkai, Zuo Zhenghong, He Chengyong. Advances in Application and Biotoxicity of Black Phosphorus Nanosheet[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 115-127. doi: 10.7524/AJE.1673-5897.20200503001

黑磷纳米片应用及生物毒性研究进展

    作者简介: 向思靓(1999-),女,学士,研究方向为纳米毒理学,E-mail:xslyz1106@163.com
    通讯作者: 何承勇, E-mail: hecy@xmu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(32071301);厦门大学校长基金资助项目(20720180045)

  • 中图分类号: X171.5

Advances in Application and Biotoxicity of Black Phosphorus Nanosheet

    Corresponding author: He Chengyong, hecy@xmu.edu.cn
  • Fund Project:
  • 摘要: 黑磷纳米片(black phosphorus nanosheet,BPNS)是一种新型纳米材料,它拥有可调节的带隙宽度、高度各向异性、高载流子迁移率、广谱光吸收性和良好生物相容性等诸多特性,在电子、光电、电化学、环保和生物医学等领域表现出巨大的应用潜力。近年来,随着对BPNS研究的深入,其生物安全性问题备受关注。本文简要介绍了BPNS的应用现状和前景,着重综述了其环境危害、健康危害以及毒性机制研究进展,为生产生物安全性更高、环境更友好的黑磷纳米材料提供科学依据。
  • 加载中
  • Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377
    陈万松, 刘又年. 黑磷纳米材料及其在生物医药中的应用[J]. 科学, 2017, 69(6):18-21

    , 4 Chen W S, Liu Y N. Black phosphorus nanomaterials and their biomedical applications[J]. Science, 2017, 69(6):18-21, 4(in Chinese)

    Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10):12823-12833
    Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4):3596-3604
    Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie, 2017, 56(35):10443-10445
    Qu G B, Xia T, Zhou W H, et al. Property-activity relationship of black phosphorus at the nano-bio interface:From molecules to organisms[J]. Chemical Reviews, 2020, 120(4):2288-2346
    Keyes R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3):580-584
    Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J]. PNAS, 2015, 112(15):4523-4530
    Kou L Z, Chen C F, Smith S C. Phosphorene:Fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(14):2794-2805
    Wang X. Graphene nanoribbons:Chemical stitching[J]. Nature Nanotechnology, 2014, 9(11):875-876
    Kim J, Baik S S, Ryu S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249):723-726
    Choi J R, Yong K W, Choi J Y, et al. Black phosphorus and its biomedical applications[J]. Theranostics, 2018, 8(4):1005-1026
    Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4):4033-4041
    Perera M M, Lin M W, Chuang H J, et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating[J]. ACS Nano, 2013, 7(5):4449-4458
    Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6):3347-3352
    Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4):1995-2002
    Abbas A N, Liu B L, Chen L, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5):5618-5624
    Liu Y, Wang Y, Ikram M, et al. Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-Level NOx gas sensor[J]. ACS Sensors, 2018, 3(8):1576-1583
    Wu J, Koon G K W, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus[J]. ACS Nano, 2015, 9(8):8070-8077
    Zheng J L, Yang Z H, Si C, et al. Black phosphorus based all-optical-signal-processing:Toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6):1466-1476
    Hao C X, Yang B C, Wen F S, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials, 2016, 28(16):3194-3201
    Zhang Y P, Wang L L, Xu H, et al. 3D chemical cross-linking structure of black Phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Advanced Functional Materials, 2020, 30(12):1909372
    Wang H M, Zhong L, Liu Y, et al. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy[J]. Chemical Communications, 2018, 54(25):3142-3145
    Xing C Y, Chen S Y, Qiu M, et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy[J]. Advanced Healthcare Materials, 2018, 7(7):e1701510
    Zhang D, Lin X, Lan S Y, et al. Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black Phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy[J]. Particle & Particle Systems Characterization, 2018, 35(4):1800010
    Wang H, Yang X Z, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation[J]. Journal of the American Chemical Society, 2015, 137(35):11376-11382
    Yang B W, Ding L, Chen Y, et al. Augmenting tumor-starvation therapy by cancer cell autophagy inhibition[J]. Advanced Science, 2020, 7(6):1902847
    Chen W S, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5):1603864
    Fojtu° M, Chia X Y, Sofer Z, et al. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line[J]. Advanced Functional Materials, 2017, 27(36):1701955
    Zong S F, Wang L L, Yang Z Y, et al. Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia[J]. ACS Applied Materials & Interfaces, 2019, 11(6):5896-5902
    Chen W S, Ouyang J, Yi X Y, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Advanced Materials, 2018, 30(3):1703458
    Qian Y, Yuan W E, Cheng Y, et al. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis[J]. Nano Letters, 2019, 19(12):8990-9001
    Yang B W, Yin J H, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds:A stepwise countermeasure for osteosarcoma[J]. Advanced Materials, 2018, 30(10):1705611
    Huang X W, Wei J J, Zhang M Y, et al. Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications[J]. ACS Applied Materials & Interfaces, 2018, 10(41):35495-35502
    Yan J Q, Verma P, Kuwahara Y, et al. Recent progress on black phosphorus-based materials for photocatalytic water splitting[J]. Small Methods, 2018, 2(12):1800212
    Zhu X J, Zhang T M, Sun Z J, et al. Black phosphorus revisited:A missing metal-free elemental photocatalyst for visible light hydrogen evolution[J]. Advanced Materials, 2017, 29(17):1605776
    Zhu M S, Osakada Y, Kim S, et al. Black phosphorus:A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 217:285-292
    Lee H U, Lee S C, Won J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5:8691
    Wang X, Zhou B Q, Zhang Y M, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2018, 769:316-324
    Hu J D, Chen D Y, Mo Z, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie, 2019, 58(7):2073-2077
    Xiong Z Q, Zhang X J, Zhang S Y, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets[J]. Ecotoxicology and Environmental Safety, 2018, 161:507-514
    Ouyang J, Liu R Y, Chen W S, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39):6302-6310
    Wu Q, Yao L L, Zhao X C, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism[J]. Environmental Science & Technology, 2020, 54(3):1583-1592
    Li P, Zeng L, Gao J, et al. Perturbation of normal algal growth by black phosphorus nanosheets:The role of degradation[J]. Environmental Science & Technology Letters, 2020, 7(1):35-41
    Guiney L M, Wang X, Xia T, et al. Assessing and mitigating the hazard potential of two-dimensional materials[J]. ACS Nano, 2018, 12(7):6360-6377
    Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. PNAS, 2018, 115(3):501-506
    Latiff N M, Teo W Z, Sofer Z, et al. The cytotoxicity of layered black phosphorus[J]. Chemistry, 2015, 21(40):13991-13995
    Mohamad Latiff N, Mayorga-Martinez C C, Sofer Z, et al. Cytotoxicity of phosphorus allotropes (black, violet, red)[J]. Applied Materials Today, 2018, 13:310-319
    Zhang X J, Zhang Z M, Zhang S Y, et al. 2D materials:Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms (small 32/2017)[J]. Small, 2017, 13(32):201770171
    Song S J, Shin Y, Lee H, et al. Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells[J]. Nanomaterials, 2018, 8(6):408
    Sun Y R, Fan S H, Fan S H, et al. In vitro and in vivo toxicity of black phosphorus nanosheets[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):659-667
    Fojtu° M, Balvan J, Raudenská M, et al. Black phosphorus cytotoxicity assessments pitfalls:Advantages and disadvantages of metabolic and morphological assays[J]. Chemistry, 2019, 25(1):349-360
    Mo J B, Xie Q Y, Wei W, et al. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona[J]. Nature Communications, 2018, 9:2480
    Zhang H M, Han Q Q, Yin X L, et al. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 227:117662
    Tao W, Zhu X B, Yu X H, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Advanced Materials, 2017, 29(1):1603276
    Zhao Y T, Wang H Y, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie, 2016, 55(16):5003-5007
    Zhou Q H, Chen Q, Tong Y L, et al. Light-induced ambient degradation of few-layer black phosphorus:Mechanism and protection[J]. Angewandte Chemie, 2016, 55(38):11437-11441
    Zhao W C, Xue Z M, Wang J F, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50):27608-27612
    Qu G B, Liu W, Zhao Y T, et al. Improved biocompatibility of black phosphorus nanosheets by chemical modification[J]. Angewandte Chemie, 2017, 56(46):14488-14493
    Zeng X W, Luo M M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments[J]. Advanced Science, 2018, 5(10):1800510
    Zhao Y T, Tong L P, Li Z B, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy[J]. Chemistry of Materials, 2017, 29(17):7131-7139
    He C Y, Jiang S W, Jin H J, et al. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity[J]. Biomaterials, 2016, 83:102-114
    Klingberg H, Oddershede L B, Loeschner K, et al. Uptake of gold nanoparticles in primary human endothelial cells[J]. Toxicology Research, 2015, 4(3):655-666
    Zhu L, Chang D W, Dai L M, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597
    Tiong H Y, Huang P, Xiong S J, et al. Drug-induced nephrotoxicity:Clinical impact and preclinical in vitro models[J]. Molecular Pharmaceutics, 2014, 11(7):1933-1948
    Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease[J]. Nature Cell Biology, 2016, 18(3):246-254
    He C Y, Ruan F K, Jiang S W, et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells[J]. Small, 2020, 16(22):e2001371
    Shao J D, Ruan C S, Xie H H, et al. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Advanced Science, 2018, 5(5):1700848
    Jin L G, Hu P, Wang Y Y, et al. Fast-acting black-phosphorus-assisted depression therapy with low toxicity[J]. Advanced Materials, 2020, 32(2):e1906050
    Hou J J, Wang H, Ge Z L, et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets[J]. Nano Letters, 2020, 20(2):1447-1454
    Sun C X, Wen L, Zeng J F, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer[J]. Biomaterials, 2016, 91:81-89
    Kong N, Ji X Y, Wang J Q, et al. ROS-mediated selective killing effect of black phosphorus:Mechanistic understanding and its guidance for safe biomedical applications[J]. Nano Letters, 2020, 20(5):3943-3955
    Mu X Y, Wang J Y, Bai X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice[J]. ACS Applied Materials & Interfaces, 2017, 9(24):20399-20409
    Böhmert L, Niemann B, Lichtenstein D, et al. Molecular mechanism of silver nanoparticles in human intestinal cells[J]. Nanotoxicology, 2015, 9(7):852-860
    Yao M F, He L L, McClements D J, et al. Uptake of gold nanoparticles by intestinal epithelial cells:Impact of particle size on their absorption, accumulation, and toxicity[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36):8044-8049
    Wang B, Feng W Y, Wang M, et al. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice[J]. Journal of Nanoparticle Research, 2008, 10(2):263-276
    Heller A, Jarvis K, Coffman S S. Association of type 2 diabetes with submicron titanium dioxide crystals in the pancreas[J]. Chemical Research in Toxicology, 2018, 31(6):506-509
    Lin S J, Yu T, Yu Z Y, et al. Nanomaterials safer-by-design:An environmental safety perspective[J]. Advanced Materials, 2018, 30(17):e1705691
    Peng G T, He Y, Wang X X, et al. Redox activity and nano-bio interactions determine the skin injury potential of Co3O4-based metal oxide nanoparticles toward zebrafish[J]. ACS Nano, 2020, 14(4):4166-4177
    Lin S J, Wang H T, Yu T. A promising trend for nano-EHS research-Integrating fate and transport analysis with safety assessment using model organisms[J]. NanoImpact, 2017, 7:1-6
  • 加载中
计量
  • 文章访问数:  4141
  • HTML全文浏览数:  4141
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-03

黑磷纳米片应用及生物毒性研究进展

    通讯作者: 何承勇, E-mail: hecy@xmu.edu.cn
    作者简介: 向思靓(1999-),女,学士,研究方向为纳米毒理学,E-mail:xslyz1106@163.com
  • 厦门大学生命科学学院, 细胞应激生物学国家重点实验室, 厦门 361102
基金项目:

国家自然科学基金面上项目(32071301);厦门大学校长基金资助项目(20720180045)

摘要: 黑磷纳米片(black phosphorus nanosheet,BPNS)是一种新型纳米材料,它拥有可调节的带隙宽度、高度各向异性、高载流子迁移率、广谱光吸收性和良好生物相容性等诸多特性,在电子、光电、电化学、环保和生物医学等领域表现出巨大的应用潜力。近年来,随着对BPNS研究的深入,其生物安全性问题备受关注。本文简要介绍了BPNS的应用现状和前景,着重综述了其环境危害、健康危害以及毒性机制研究进展,为生产生物安全性更高、环境更友好的黑磷纳米材料提供科学依据。

English Abstract

参考文献 (80)

目录

/

返回文章
返回