黑磷纳米片应用及生物毒性研究进展
Advances in Application and Biotoxicity of Black Phosphorus Nanosheet
-
摘要: 黑磷纳米片(black phosphorus nanosheet,BPNS)是一种新型纳米材料,它拥有可调节的带隙宽度、高度各向异性、高载流子迁移率、广谱光吸收性和良好生物相容性等诸多特性,在电子、光电、电化学、环保和生物医学等领域表现出巨大的应用潜力。近年来,随着对BPNS研究的深入,其生物安全性问题备受关注。本文简要介绍了BPNS的应用现状和前景,着重综述了其环境危害、健康危害以及毒性机制研究进展,为生产生物安全性更高、环境更友好的黑磷纳米材料提供科学依据。Abstract: Black phosphorus nanosheet (BPNS) is a type of novel nanomaterial with tunable bandgap width, high anisotropy, high carrier mobility, broad optical absorption, excellent biocompatibility and many other features, showing great potential for application in the fields of electronics, optoelectronics, electrochemistry, environmental protection and biomedicine. Following further study on BPNS in recent years, its biosafety issue has drawn much attention. This paper briefly summarizes the current status of application and prospect of BPNS, and highlights the research progress on its environmental hazard, health risks and mechanisms of toxicity, which will provide a scientific basis to manufacture safer and more environment-friendly black phosphorus nanomaterials.
-
Key words:
- black phosphorus nanosheet /
- toxicity /
- mechanism of toxicity
-
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377 陈万松, 刘又年. 黑磷纳米材料及其在生物医药中的应用[J]. 科学, 2017, 69(6):18-21 , 4 Chen W S, Liu Y N. Black phosphorus nanomaterials and their biomedical applications[J]. Science, 2017, 69(6):18-21, 4(in Chinese)
Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10):12823-12833 Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4):3596-3604 Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie, 2017, 56(35):10443-10445 Qu G B, Xia T, Zhou W H, et al. Property-activity relationship of black phosphorus at the nano-bio interface:From molecules to organisms[J]. Chemical Reviews, 2020, 120(4):2288-2346 Keyes R W. The electrical properties of black phosphorus[J]. Physical Review, 1953, 92(3):580-584 Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus[J]. PNAS, 2015, 112(15):4523-4530 Kou L Z, Chen C F, Smith S C. Phosphorene:Fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(14):2794-2805 Wang X. Graphene nanoribbons:Chemical stitching[J]. Nature Nanotechnology, 2014, 9(11):875-876 Kim J, Baik S S, Ryu S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J]. Science, 2015, 349(6249):723-726 Choi J R, Yong K W, Choi J Y, et al. Black phosphorus and its biomedical applications[J]. Theranostics, 2018, 8(4):1005-1026 Liu H, Neal A T, Zhu Z, et al. Phosphorene:An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4):4033-4041 Perera M M, Lin M W, Chuang H J, et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating[J]. ACS Nano, 2013, 7(5):4449-4458 Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6):3347-3352 Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes[J]. Nanoscale, 2019, 11(4):1995-2002 Abbas A N, Liu B L, Chen L, et al. Black phosphorus gas sensors[J]. ACS Nano, 2015, 9(5):5618-5624 Liu Y, Wang Y, Ikram M, et al. Facile synthesis of highly dispersed Co3O4 nanoparticles on expanded, thin black phosphorus for a ppb-Level NOx gas sensor[J]. ACS Sensors, 2018, 3(8):1576-1583 Wu J, Koon G K W, Xiang D, et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus[J]. ACS Nano, 2015, 9(8):8070-8077 Zheng J L, Yang Z H, Si C, et al. Black phosphorus based all-optical-signal-processing:Toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6):1466-1476 Hao C X, Yang B C, Wen F S, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes[J]. Advanced Materials, 2016, 28(16):3194-3201 Zhang Y P, Wang L L, Xu H, et al. 3D chemical cross-linking structure of black Phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Advanced Functional Materials, 2020, 30(12):1909372 Wang H M, Zhong L, Liu Y, et al. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy[J]. Chemical Communications, 2018, 54(25):3142-3145 Xing C Y, Chen S Y, Qiu M, et al. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy[J]. Advanced Healthcare Materials, 2018, 7(7):e1701510 Zhang D, Lin X, Lan S Y, et al. Localized surface plasmon resonance enhanced singlet oxygen generation and light absorption based on black Phosphorus@AuNPs nanosheet for tumor photodynamic/thermal therapy[J]. Particle & Particle Systems Characterization, 2018, 35(4):1800010 Wang H, Yang X Z, Shao W, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation[J]. Journal of the American Chemical Society, 2015, 137(35):11376-11382 Yang B W, Ding L, Chen Y, et al. Augmenting tumor-starvation therapy by cancer cell autophagy inhibition[J]. Advanced Science, 2020, 7(6):1902847 Chen W S, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer[J]. Advanced Materials, 2017, 29(5):1603864 Fojtu° M, Chia X Y, Sofer Z, et al. Black phosphorus nanoparticles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line[J]. Advanced Functional Materials, 2017, 27(36):1701955 Zong S F, Wang L L, Yang Z Y, et al. Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia[J]. ACS Applied Materials & Interfaces, 2019, 11(6):5896-5902 Chen W S, Ouyang J, Yi X Y, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy[J]. Advanced Materials, 2018, 30(3):1703458 Qian Y, Yuan W E, Cheng Y, et al. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis[J]. Nano Letters, 2019, 19(12):8990-9001 Yang B W, Yin J H, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds:A stepwise countermeasure for osteosarcoma[J]. Advanced Materials, 2018, 30(10):1705611 Huang X W, Wei J J, Zhang M Y, et al. Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications[J]. ACS Applied Materials & Interfaces, 2018, 10(41):35495-35502 Yan J Q, Verma P, Kuwahara Y, et al. Recent progress on black phosphorus-based materials for photocatalytic water splitting[J]. Small Methods, 2018, 2(12):1800212 Zhu X J, Zhang T M, Sun Z J, et al. Black phosphorus revisited:A missing metal-free elemental photocatalyst for visible light hydrogen evolution[J]. Advanced Materials, 2017, 29(17):1605776 Zhu M S, Osakada Y, Kim S, et al. Black phosphorus:A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 217:285-292 Lee H U, Lee S C, Won J, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts[J]. Scientific Reports, 2015, 5:8691 Wang X, Zhou B Q, Zhang Y M, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2018, 769:316-324 Hu J D, Chen D Y, Mo Z, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie, 2019, 58(7):2073-2077 Xiong Z Q, Zhang X J, Zhang S Y, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets[J]. Ecotoxicology and Environmental Safety, 2018, 161:507-514 Ouyang J, Liu R Y, Chen W S, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39):6302-6310 Wu Q, Yao L L, Zhao X C, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism[J]. Environmental Science & Technology, 2020, 54(3):1583-1592 Li P, Zeng L, Gao J, et al. Perturbation of normal algal growth by black phosphorus nanosheets:The role of degradation[J]. Environmental Science & Technology Letters, 2020, 7(1):35-41 Guiney L M, Wang X, Xia T, et al. Assessing and mitigating the hazard potential of two-dimensional materials[J]. ACS Nano, 2018, 12(7):6360-6377 Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. PNAS, 2018, 115(3):501-506 Latiff N M, Teo W Z, Sofer Z, et al. The cytotoxicity of layered black phosphorus[J]. Chemistry, 2015, 21(40):13991-13995 Mohamad Latiff N, Mayorga-Martinez C C, Sofer Z, et al. Cytotoxicity of phosphorus allotropes (black, violet, red)[J]. Applied Materials Today, 2018, 13:310-319 Zhang X J, Zhang Z M, Zhang S Y, et al. 2D materials:Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms (small 32/2017)[J]. Small, 2017, 13(32):201770171 Song S J, Shin Y, Lee H, et al. Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells[J]. Nanomaterials, 2018, 8(6):408 Sun Y R, Fan S H, Fan S H, et al. In vitro and in vivo toxicity of black phosphorus nanosheets[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(2):659-667 Fojtu° M, Balvan J, Raudenská M, et al. Black phosphorus cytotoxicity assessments pitfalls:Advantages and disadvantages of metabolic and morphological assays[J]. Chemistry, 2019, 25(1):349-360 Mo J B, Xie Q Y, Wei W, et al. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona[J]. Nature Communications, 2018, 9:2480 Zhang H M, Han Q Q, Yin X L, et al. Insights into the binding mechanism of two-dimensional black phosphorus nanosheets-protein associations[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 227:117662 Tao W, Zhu X B, Yu X H, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Advanced Materials, 2017, 29(1):1603276 Zhao Y T, Wang H Y, Huang H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie, 2016, 55(16):5003-5007 Zhou Q H, Chen Q, Tong Y L, et al. Light-induced ambient degradation of few-layer black phosphorus:Mechanism and protection[J]. Angewandte Chemie, 2016, 55(38):11437-11441 Zhao W C, Xue Z M, Wang J F, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50):27608-27612 Qu G B, Liu W, Zhao Y T, et al. Improved biocompatibility of black phosphorus nanosheets by chemical modification[J]. Angewandte Chemie, 2017, 56(46):14488-14493 Zeng X W, Luo M M, Liu G, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments[J]. Advanced Science, 2018, 5(10):1800510 Zhao Y T, Tong L P, Li Z B, et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy[J]. Chemistry of Materials, 2017, 29(17):7131-7139 He C Y, Jiang S W, Jin H J, et al. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity[J]. Biomaterials, 2016, 83:102-114 Klingberg H, Oddershede L B, Loeschner K, et al. Uptake of gold nanoparticles in primary human endothelial cells[J]. Toxicology Research, 2015, 4(3):655-666 Zhu L, Chang D W, Dai L M, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597 Tiong H Y, Huang P, Xiong S J, et al. Drug-induced nephrotoxicity:Clinical impact and preclinical in vitro models[J]. Molecular Pharmaceutics, 2014, 11(7):1933-1948 Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease[J]. Nature Cell Biology, 2016, 18(3):246-254 He C Y, Ruan F K, Jiang S W, et al. Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells[J]. Small, 2020, 16(22):e2001371 Shao J D, Ruan C S, Xie H H, et al. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Advanced Science, 2018, 5(5):1700848 Jin L G, Hu P, Wang Y Y, et al. Fast-acting black-phosphorus-assisted depression therapy with low toxicity[J]. Advanced Materials, 2020, 32(2):e1906050 Hou J J, Wang H, Ge Z L, et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets[J]. Nano Letters, 2020, 20(2):1447-1454 Sun C X, Wen L, Zeng J F, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer[J]. Biomaterials, 2016, 91:81-89 Kong N, Ji X Y, Wang J Q, et al. ROS-mediated selective killing effect of black phosphorus:Mechanistic understanding and its guidance for safe biomedical applications[J]. Nano Letters, 2020, 20(5):3943-3955 Mu X Y, Wang J Y, Bai X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice[J]. ACS Applied Materials & Interfaces, 2017, 9(24):20399-20409 Böhmert L, Niemann B, Lichtenstein D, et al. Molecular mechanism of silver nanoparticles in human intestinal cells[J]. Nanotoxicology, 2015, 9(7):852-860 Yao M F, He L L, McClements D J, et al. Uptake of gold nanoparticles by intestinal epithelial cells:Impact of particle size on their absorption, accumulation, and toxicity[J]. Journal of Agricultural and Food Chemistry, 2015, 63(36):8044-8049 Wang B, Feng W Y, Wang M, et al. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice[J]. Journal of Nanoparticle Research, 2008, 10(2):263-276 Heller A, Jarvis K, Coffman S S. Association of type 2 diabetes with submicron titanium dioxide crystals in the pancreas[J]. Chemical Research in Toxicology, 2018, 31(6):506-509 Lin S J, Yu T, Yu Z Y, et al. Nanomaterials safer-by-design:An environmental safety perspective[J]. Advanced Materials, 2018, 30(17):e1705691 Peng G T, He Y, Wang X X, et al. Redox activity and nano-bio interactions determine the skin injury potential of Co3O4-based metal oxide nanoparticles toward zebrafish[J]. ACS Nano, 2020, 14(4):4166-4177 Lin S J, Wang H T, Yu T. A promising trend for nano-EHS research-Integrating fate and transport analysis with safety assessment using model organisms[J]. NanoImpact, 2017, 7:1-6
计量
- 文章访问数: 4141
- HTML全文浏览数: 4141
- PDF下载数: 102
- 施引文献: 0