典型SSRIs类抗抑郁药对鱼类的毒性效应研究进展
Research Progress on Toxic Effects of Typical SSRIs Antidepressants on Fish
-
摘要: 选择性血清素再摄取抑制剂(selective serotonin reuptake inhibitors,SSRIs)是一类在临床上具有良好治疗效果的抗抑郁药物,由于使用量巨大,在水环境中频繁被检出,其潜在生态毒性效应引起人们的广泛关注。鱼类作为水生脊椎动物,具有和人类相似的神经调控系统,更易受到水体中残留的SSRIs的影响。本文综述了SSRIs在鱼类体内的代谢和生物积累效应,以及SSRIs对鱼类产生的生长发育毒性、生殖毒性和神经行为毒性,并对未来该领域的研究进行了展望。
-
关键词:
- 选择性血清素再摄取抑制剂 /
- 鱼类 /
- 生长发育毒性 /
- 生殖毒性 /
- 神经行为毒性
Abstract: Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants which are used widely in human clinical medicine. Due to high prescription rates and ubiquitous use, SSRIs are frequently detected in the aquatic environment, and their potential ecotoxic effects have caused widespread global concern. As vertebrates, fish show some homology in neuroregulatory system compared to humans, and thus, can be susceptible to effects due to psychotropic drug contaminants in the water. This review outlines the metabolism and bioaccumulation of SSRIs in fish and introduces the influence of SSRIs on the growth and development, reproduction, and behavior of fish. Based on published data, we point out the limitations of current toxicological research on SSRIs and propose future studies for this important class of chemicals in aquatic toxicology. -
-
Xie Z X, Lu G H, Liu J C, et al. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China[J]. Chemosphere, 2015, 138:140-147 Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658:333-342 Lajeunesse A, Smyth S A, Barclay K, et al. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada[J]. Water Research, 2012, 46(17):5600-5612 Ma L D, Li J, Li J J, et al. Occurrence and source analysis of selected antidepressants and their metabolites in municipal wastewater and receiving surface water[J]. Environmental Science Processes & Impacts, 2018, 20(7):1020-1029 Cao J S, Fu B M, Zhang T, et al. Fate of typical endocrine active compounds in full-scale wastewater treatment plants:Distribution, removal efficiency and potential risks[J]. Bioresource Technology, 2020, 310:123436 Mole R A, Brooks B W. Global scanning of selective serotonin reuptake inhibitors:Occurrence, wastewater treatment and hazards in aquatic systems[J]. Environmental Pollution, 2019, 250:1019-1031 Silva L J, Lino C M, Meisel L M, et al. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment:An ecopharmacovigilance approach[J]. Science of the Total Environment, 2012, 437:185-195 Togunde O P, Cudjoe E, Oakes K D, et al. Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system[J]. Journal of Chromatography A, 2012, 1262:34-42 Arnnok P, Singh R R, Burakham R, et al. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River[J]. Environmental Science & Technology, 2017, 51(18):10652-10662 Wu M H, Xiang J J, Chen F F, et al. Occurrence and risk assessment of antidepressants in Huangpu River of Shanghai, China[J]. Environmental Science and Pollution Research International, 2017, 24(25):20291-20299 Grabicova K, Grabic R, Fedorova G, et al. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream[J]. Water Research, 2017, 124:654-662 Ni W, Watts S W. 5-hydroxytryptamine in the cardiovascular system:Focus on the serotonin transporter (SERT)[J]. Clinical and Experimental Pharmacology & Physiology, 2006, 33(7):575-583 Brooks B W. Fish on Prozac (and Zoloft):Ten years later[J]. Aquatic Toxicology, 2014, 151:61-67 Lillesaar C. The serotonergic system in fish[J]. Journal of Chemical Neuroanatomy, 2011, 41(4):294-308 Prasad P, Ogawa S, Parhar I S. Role of serotonin in fish reproduction[J]. Frontiers in Neuroscience, 2015, 9:195 Duffy-Whritenour J E, Zelikoff J T. Relationship between serotonin and the immune system in a teleost model[J]. Brain, Behavior, and Immunity, 2008, 22(2):257-264 Qiu W H, Wu M H, Liu S, et al. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio)[J]. Toxicology and Applied Pharmacology, 2017, 322:1-8 裴可灵, 张涛, 张一弛, 等. CYP2D6/CYP2C19基因多态性对SSRIs药物代谢及效应的影响[J]. 精神医学杂志, 2017, 30(4):294-296 Smith E M, Chu S G, Paterson G, et al. Cross-species comparison of fluoxetine metabolism with fish liver microsomes[J]. Chemosphere, 2010, 79(1):26-32 Tisler S, Zindler F, Freeling F, et al. Transformation products of fluoxetine formed by photodegradation in water and biodegradation in zebrafish embryos (Danio rerio)[J]. Environmental Science & Technology, 2019, 53(13):7400-7409 Zindler F, Tisler S, Loerracher A K, et al. Norfluoxetine is the only metabolite of fluoxetine in zebrafish (Danio rerio) embryos that accumulates at environmentally relevant exposure scenarios[J]. Environmental Science & Technology, 2020, 54(7):4200-4209 刘昭前, 王久辉, 周宏灏. 氟西汀的药代动力学及其与CYP450酶的作用[J]. 中国药理学通报, 2000, 16(6):618-620 Liu Z Q, Wang J H, Zhou H H. Pharmacokinetics of fluoxetine and its effects on cytochrome P450 isoenzymes[J]. Chinese Pharmacological Bulletin, 2000, 16(6):618-620(in Chinese)
Paterson G, Metcalfe C D. Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes)[J]. Chemosphere, 2008, 74(1):125-130 David A, Lange A, Tyler C R, et al. Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent[J]. Science of the Total Environment, 2018, 621:782-790 Grabicova K, Lindberg R H, Ostman M, et al. Tissue-specific bioconcentration of antidepressants in fish exposed to effluent from a municipal sewage treatment plant[J]. Science of the Total Environment, 2014, 488-489:46-50 Lajeunesse A, Gagnon C, Gagné F, et al. Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment-Evidence of biological effects[J]. Chemosphere, 2011, 83(4):564-571 Liu J C, Dan X X, Lu G H, et al. Investigation of pharmaceutically active compounds in an urban receiving water:Occurrence, fate and environmental risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 154:214-220 Xie Z X, Lu G H, Li S, et al. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline[J]. Chemosphere, 2015, 135:146-155 Pan C Y, Yang M, Xu H, et al. Tissue bioconcentration and effects of fluoxetine in zebrafish (Danio rerio) and red crucian cap (Carassius auratus) after short-term and long-term exposure[J]. Chemosphere, 2018, 205:8-14 Granato M, van Eeden F J, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva[J]. Development, 1996, 123:399-413 Voesenek C J, Muijres F T, van Leeuwen J L. Biomechanics of swimming in developing larval fish[J]. Journal of Experimental Biology, 2018, 221(1):149583 Assad N, Luz W L, Santos-Silva M, et al. Acute restraint stress evokes anxiety-like behavior mediated by telencephalic inactivation and GabAergic dysfunction in zebrafish brains[J]. Scientific Reports, 2020, 10(1):5551 Barreiro-Iglesias A, Mysiak K S, Scott A L, et al. Serotonin promotes development and regeneration of spinal motor neurons in zebrafish[J]. Cell Reports, 2015, 13(5):924-932 Nakamura Y, Yamamoto H, Sekizawa J, et al. The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes):Acute toxicity in fish larvae and bioaccumulation in juvenile fish[J]. Chemosphere, 2008, 70(5):865-873 Valenti T W Jr, Perez-Hurtado P, Chambliss C K, et al. Aquatic toxicity of sertraline to Pimephales promelas at environmentally relevant surface water pH[J]. Environmental Toxicology and Chemistry, 2009, 28(12):2685-2694 de Farias N O, Oliveira R, Sousa-Moura D, et al. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 215:1-8 Alsop D, Wood C M. Metal and pharmaceutical mixtures:Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?[J]. Aquatic Toxicology, 2013, 140-141:257-267 Henry T B, Black M C. Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(2):325-330 Chen H X, Zeng X F, Mu L, et al. Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva[J]. Ecotoxicology and Environmental Safety, 2018, 160:104-113 Brooks B W, Turner P K, Stanley J K, et al. Waterborne and sediment toxicity of fluoxetine to select organisms[J]. Chemosphere, 2003, 52(1):135-142 Chiffre A, Clérandeau C, Dwoinikoff C, et al. Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations[J]. Environmental Science and Pollution Research, 2016, 23(6):4964-4977 Minagh E, Hernan R, O'Rourke K, et al. Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species[J]. Ecotoxicology and Environmental Safety, 2009, 72(2):434-440 Cunha V, Rodrigues P, Santos M M, et al. Danio rerio embryos on Prozac-Effects on the detoxification mechanism and embryo development[J]. Aquatic Toxicology, 2016, 178:182-189 Kalichak F, Idalencio R, Rosa J G, et al. Waterborne psychoactive drugs impair the initial development of zebrafish[J]. Environmental Toxicology and Pharmacology, 2016, 41:89-94 Pelli M, Connaughton V P. Chronic exposure to environmentally-relevant concentrations of fluoxetine (Prozac) decreases survival, increases abnormal behaviors, and delays predator escape responses in guppies[J]. Chemosphere, 2015, 139:202-209 Nowakowska K, Giebułtowicz J, Kamaszewski M, et al. Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants:Bioaccumulation, physiological and histological changes[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 229:108670 Ribeiro S, Torres T, Martins R, et al. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays[J]. Ecotoxicology and Environmental Safety, 2015, 114:67-74 Sehonova P, Hodkovicova N, Urbanova M, et al. Effects of antidepressants with different modes of action on early life stages of fish and amphibians[J]. Environmental Pollution, 2019, 254:112999 Wu M H, Liu S, Hu L, et al. Global transcriptomic analysis of zebrafish in response to embryonic exposure to three antidepressants, amitriptyline, fluoxetine and mianserin[J]. Aquatic Toxicology, 2017, 192:274-283 Park J W, Heah T P, Gouffon J S, et al. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure[J]. Environmental Pollution, 2012, 167:163-170 Buznikov G A, Lambert H W, Lauder J M. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis[J]. Cell and Tissue Research, 2001, 305(2):177-186 Airhart M J, Lee D H, Wilson T D, et al. Adverse effects of serotonin depletion in developing zebrafish[J]. Neurotoxicology and Teratology, 2012, 34(1):152-160 Sourbron J, Schneider H, Kecskés A, et al. Serotonergic modulation as effective treatment for dravet syndrome in a zebrafish mutant model[J]. ACS Chemical Neuroscience, 2016, 7(5):588-598 Cunha V, Rodrigues P, Santos M M, et al. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos[J]. Chemosphere, 2018, 191:954-961 Carty D R, Hala D, Huggett D B. The effects of sertraline on fathead minnow (Pimephales promelas) growth and steroidogenesis[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(6):753-757 Knobil E. The neuroendocrine control of the menstrual cycle[J]. Recent Progress in Hormone Research, 1980, 36:53-88 Prasad P, Ogawa S, Parhar I S. Serotonin reuptake inhibitor citalopram inhibits GnRH synthesis and spermatogenesis in the male zebrafish[J]. Biology of Reproduction, 2015, 93(4):102 White S A, Kasten T L, Bond C T, et al. Three gonadotropin-releasing hormone genes in one organism suggest novel roles for an ancient peptide[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(18):8363-8367 Parhar I S. Cell migration and evolutionary significance of GnRH subtypes[J]. Progress in Brain Research, 2002, 141:3-17 McCann S M, Karanth S, Mastronardi C A, et al. Hypothalamic control of gonadotropin secretion[J]. Progress in Brain Research, 2002, 141:151-164 Orth J M. The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats[J]. Endocrinology, 1984, 115(4):1248-1255 Pierce J G, Parsons T F. Glycoprotein Hormones:Similar Molecules with Different Functions[M]//Sigman D S, Brazier M AB. The Evolution of Protein Structure and Function. Amsterdam:Elsevier, 1980:99-117 McDonald M D. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 197:19-31 Schultz M M, Painter M M, Bartell S E, et al. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows[J]. Aquatic Toxicology, 2011, 104(1-2):38-47 Silva de Assis H C, Simmons D B, Zamora J M, et al. Estrogen-like effects in male goldfish co-exposed to fluoxetine and 17 alpha-ethinylestradiol[J]. Environmental Science & Technology, 2013, 47(10):5372-5382 Foran C M, Weston J, Slattery M, et al. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4):511-517 Mennigen J A, Lado W E, Zamora J M, et al. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus[J]. Aquatic Toxicology, 2010, 100(4):354-364 Fursdon J B, Martin J M, Bertram M G, et al. The pharmaceutical pollutant fluoxetine alters reproductive behaviour in a fish independent of predation risk[J]. Science of the Total Environment, 2019, 650(Pt 1):642-652 Bertram M G, Ecker T E, Wong B B M, et al. The antidepressant fluoxetine alters mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki)[J]. Environmental Pollution, 2018, 238:238-247 Weinberger J Ⅱ, Klaper R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow)[J]. Aquatic Toxicology, 2014, 151:77-83 Lister A, Regan C, van Zwol J, et al. Inhibition of egg production in zebrafish by fluoxetine and municipal effluents:A mechanistic evaluation[J]. Aquatic Toxicology, 2009, 95(4):320-329 Brodin T, Piovano S, Fick J, et al. Ecological effects of pharmaceuticals in aquatic systems-Impacts through behavioural alterations[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014, 369(1656):20130580 Rand-Weaver M, Margiotta-Casaluci L, Patel A, et al. The read-across hypothesis and environmental risk assessment of pharmaceuticals[J]. Environmental Science & Technology, 2013, 47(20):11384-11395 Huggett D B, Cook J C, Ericson J F, et al. A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish[J]. Human and Ecological Risk Assessment:An International Journal, 2003, 9(7):1789-1799 Saaristo M, McLennan A, Johnstone C P, et al. Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata)[J]. Aquatic Toxicology, 2017, 183:38-45 Forsatkar M N, Nematollahi M A, Amiri B M, et al. Fluoxetine inhibits aggressive behaviour during parental care in male fighting fish (Betta splendens, Regan)[J]. Ecotoxicology, 2014, 23(9):1794-1802 Martin J M, Bertram M G, Saaristo M, et al. Antidepressants in surface waters:Fluoxetine influences mosquitofish anxiety-related behavior at environmentally relevant levels[J]. Environmental Science & Technology, 2019, 53(10):6035-6043 Ansai S, Hosokawa H, Maegawa S, et al. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes[J]. Behavioural Brain Research, 2016, 303:126-136 Valenti T W, Gould G G, Berninger J P, et al. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows[J]. Environmental Science & Technology, 2012, 46(4):2427-2435 Nielsen S V, Frausing M, Henriksen P G, et al. The psychoactive drug escitalopram affects foraging behavior in zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1902-1910 Nielsen S V, Kellner M, Henriksen P G, et al. The psychoactive drug Escitalopram affects swimming behaviour and increases boldness in zebrafish (Danio rerio)[J]. Ecotoxicology, 2018, 27(4):485-497 -

计量
- 文章访问数: 3180
- HTML全文浏览数: 3180
- PDF下载数: 151
- 施引文献: 0