环境污染物干扰鱼类体色的研究及其生态毒理学意义

杨莉, 王力军, 金映虹, 侯宇, 张春暖, 张纪亮. 环境污染物干扰鱼类体色的研究及其生态毒理学意义[J]. 生态毒理学报, 2021, 16(3): 40-51. doi: 10.7524/AJE.1673-5897.20201022003
引用本文: 杨莉, 王力军, 金映虹, 侯宇, 张春暖, 张纪亮. 环境污染物干扰鱼类体色的研究及其生态毒理学意义[J]. 生态毒理学报, 2021, 16(3): 40-51. doi: 10.7524/AJE.1673-5897.20201022003
Yang Li, Wang Lijun, Jin Yinghong, Hou Yu, Zhang Chunnuan, Zhang Jiliang. Influence of Environmental Pollutants on Fish Body Coloration and Ecotoxicological Significance Involved[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 40-51. doi: 10.7524/AJE.1673-5897.20201022003
Citation: Yang Li, Wang Lijun, Jin Yinghong, Hou Yu, Zhang Chunnuan, Zhang Jiliang. Influence of Environmental Pollutants on Fish Body Coloration and Ecotoxicological Significance Involved[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 40-51. doi: 10.7524/AJE.1673-5897.20201022003

环境污染物干扰鱼类体色的研究及其生态毒理学意义

    作者简介: 杨莉(1993-),女,硕士研究生,研究方向为水生毒理学,E-mail:18437959270@163.com
    通讯作者: 张纪亮, E-mail: jlzhang@hainnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(42067039)

  • 中图分类号: X171.5

Influence of Environmental Pollutants on Fish Body Coloration and Ecotoxicological Significance Involved

    Corresponding author: Zhang Jiliang, jlzhang@hainnu.edu.cn
  • Fund Project:
  • 摘要: 鱼类体色对环境污染物十分敏感,使其成为污染监测中理想的生物指示物,具有广阔的应用前景。鱼类体色调控复杂,涉及的基因丰富。本文综述污染物对鱼类体色的干扰作用及可能的干扰机制,为鱼类体色应用于污染监测相关生物标志物筛选及生态风险评估提供参考资料;同时,从鱼类色素合成和代谢、色素细胞发育和迁移、体色变化的调控等方面,综述鱼类体色的分子基础,有助于探究污染物干扰鱼类体色的可能靶点和毒理学机制,为鱼类体色生理学基础理论的发展提供重要参考资料。
  • 加载中
  • Cuthill Innes C, Allen William L, Kevin A, et al. The biology of color[J]. Science, 2017, 357(6350):470
    Cal L, Suarez-Bregua P, Moran P, et al. Fish Pigmentation. A Key Issue for the Sustainable Development of Fish Farming[M]//Emerging Issues in Fish Larvae Research. Cham:Springer International Publishing, 2018:229-252
    Kaur R, Dua A. Colour changes in Labeo rohita (Ham.) due to pigment translocation in melanophores, on exposure to municipal wastewater of Tung Dhab drain, Amritsar, India[J]. Environmental Toxicology and Pharmacology, 2015, 39(2):747-757
    Lifshitz N, St Clair C C. Coloured ornamental traits could be effective and non-invasive indicators of pollution exposure for wildlife[J]. Conservation Physiology, 2016, 4(1):cow028
    Parolini M, Iacobuzio R, Bassano B, et al. Melanin-based skin coloration predicts antioxidant capacity in the brown trout (Salmo trutta)[J]. Physiological and Biochemical Zoology, 2018, 91(5):1026-1035
    Toft G, Baatrup E. Sexual characteristics are altered by 4-tert-octylphenol and 17beta-estradiol in the adult male guppy (Poecilia reticulata)[J]. Ecotoxicology and Environmental Safety, 2001, 48(1):76-84
    McGree M M, Winkelman D L, Vieira N K M, et al. Reproductive failure of the red shiner (Cyprinella lutrensis) after exposure to an exogenous estrogen[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67(11):1730-1743
    Kristensen T, Baatrup E, Bayley M. 17α-ethinylestradiol reduces the competitive reproductive fitness of the male guppy (Poecilia reticulata)[J]. Biology of Reproduction, 2005, 72(1):150-156
    吴鹏. 三丁基锡对孔雀鱼(Poecilia reticulata)性征和生殖的影响及机制研究[D]. 青岛:中国海洋大学, 2013:24-28 Wu P. Effects and mechanisms of tributyltin on sexual characteristics and reproduction of guppy (Poecilia reticulata)[D]. Qingdao:Ocean University of China, 2013:24

    -28(in Chinese)

    Zhang J L, Zhang C N, Li E C, et al. Triphenyltin exposure affects mating behaviors and attractiveness to females during mating in male guppies (Poecilia reticulata)[J]. Ecotoxicology and Environmental Safety, 2019, 169:76-84
    Xiao Y, Jiang J Q, Hu W X, et al. Toxicity of triphenyltin on the development of retinal axons in zebrafish at low dose[J]. Aquatic Toxicology, 2017, 189:9-15
    Ward J L, Blum M J. Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species[J]. Evolutionary Applications, 2012, 5(8):901-912
    Baatrup E, Junge M. Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy Poecilia reticulate[J]. Environmental Health Perspectives, 2001, 109(10):1063-1070
    Arellano-Aguilar O, Macías Garcia C. Exposure to pesticides impairs the expression of fish ornaments reducing the availability of attractive males[J]. Proceedings Biological Sciences, 2008, 275(1640):1343-1350
    Shenoy K. Environmentally realistic exposure to the herbicide atrazine alters some sexually selected traits in male guppies[J]. PLoS One, 2012, 7(2):e30611
    李赟. 久效磷对孔雀鱼(Poecilia reticulata)性征的影响[D]. 青岛:中国海洋大学, 2008:43-48 Li Y. The effects of monocrotophos on sexual characteristics of guppies (Poecilia reticulata)[D]. Qingdao:Ocean University of China, 2008:43

    -48(in Chinese)

    Richterová Z, Máchová J, Stará A, et al. Effects of cyhalothrin-based pesticide on early life stages of common carp (Cyprinus carpio L.)[J]. BioMed Research International, 2014, 2014:107373
    Pereira A, Carvalho A P, Cruz C, et al. Histopathological changes and zootechnical performance in juvenile zebrafish (Danio rerio) under chronic exposure to nitrate[J]. Aquaculture, 2017, 473:197-205
    Avinashe A M. Zinc sulphate induced histopathological changes in architecture of trunk kidney of the air breathing fish, Heteropneustes fossilis (Bloch)[J]. Vidyabharati International Interdisciplinary Research Journal, 2014, 3(1):32-36
    Bhavani K, Karuppasamy R. Acute toxicity bioassay and behavioural changes on zebrafish, Danio rerio (Hamilton) under arsenic trioxide[J]. International Journal of Modern Research and Reviews, 2014, 2(1):40-46
    Lennquist A, Mårtensson Lindblad L G, Hedberg D, et al. Colour and melanophore function in rainbow trout after long term exposure to the new antifoulant medetomidine[J]. Chemosphere, 2010, 80(9):1050-1055
    Nelson J A. Physiological observations on developing rainbow trout, Salmo gairdneri (Richardson), exposed to low pH and varied calcium ion concentrations[J]. Journal of Fish Biology, 1982, 20(3):359-372
    Kaur R, Dua A. Fish scales as indicators of wastewater toxicity from an international water channel Tung Dhab drain[J]. Environmental Monitoring and Assessment, 2012, 184(5):2729-2740
    Mojovic L, Dierksen K P, Upson R H, et al. Blind and native classification of toxicity by fish chromatophores[J]. Journal of Applied Toxicology, 2004, 24(5):355-361
    Gronemeyer H, Gustafsson J Å, Laudet V. Principles for modulation of the nuclear receptor superfamily[J]. Nature Reviews Drug Discovery, 2004, 3(11):950-964
    Huang R L, Xia M H, Cho M H, et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors[J]. Environmental Health Perspectives, 2011, 119(8):1142-1148
    Wang J Q, Hou L, Zhang R F, et al. The tyrosinase gene family and albinism in fish[J]. Chinese Journal of Oceanology and Limnology, 2007, 25(2):191-198
    D'Alba L, Shawkey M D. Melanosomes:Biogenesis, properties, and evolution of an ancient organelle[J]. Physiological Reviews, 2019, 99(1):1-19
    Olson V A, Owens I P F. Costly sexual signals:Are carotenoids rare, risky or required?[J]. Trends in Ecology & Evolution, 1998, 13(12):510-514
    Dick C, Arendt J, Reznick D N, et al. The developmental and genetic trajectory of coloration in the guppy (Poecilia reticulata)[J]. Evolution & Development, 2018, 20(6):207-218
    Braasch I, Schartl M, Volff J N. Evolution of pigment synthesis pathways by gene and genome duplication in fish[J]. BMC Evolutionary Biology, 2007, 7:74
    Ziegler I, McDonald T, Hesslinger C, et al. Development of the pteridine pathway in the zebrafish, Danio rerio[J]. The Journal of Biological Chemistry, 2000, 275(25):18926-18932
    Leclercq E, Taylor J F, Migaud H. Morphological skin colour changes in teleosts[J]. Fish and Fisheries, 2009, 11(2):159-193
    Zhou L L, Liang H W, Zhou X Y, et al. Genetic characteristic and RNA-Seq analysis in transparent mutant of carp-goldfish nucleocytoplasmic hybrid[J]. Genes, 2019, 10(9):704
    Higdon C W, Mitra R D, Johnson S L. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin[J]. PLoS One, 2013, 8(7):e67801
    Ng A, Uribe R A, Yieh L, et al. Zebrafish mutations in gart and paics identify crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development[J]. Development, 2009, 136(15):2601-2611
    Welin M, Egeblad L, Johansson A, et al. Structural and functional studies of the human phosphoribosyltransferase domain containing protein 1[J]. The FEBS Journal, 2010, 277(23):4920-4930
    Tian X, Pang X L, Wang L Y, et al. Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp[J]. Gene, 2018, 666:32-43
    Greenwood A K, Cech J N, Peichel C L. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks[J]. Evolution & Development, 2012, 14(4):351-362
    Hubbard J K, Uy J A, Hauber M E, et al. Vertebrate pigmentation:From underlying genes to adaptive function[J]. Trends in Genetics, 2010, 26(5):231-239
    Braasch I, Volff J N, Schartl M. The evolution of teleost pigmentation and the fish-specific genome duplication[J]. Journal of Fish Biology, 2008, 73(8):1891-1918
    Wishkerman A, Boglino A, Darias M J, et al. Image analysis-based classification of pigmentation patterns in fish:A case study of pseudo-albinism in Senegalese sole[J]. Aquaculture, 2016, 464:303-308
    Aybar M J, Glavic A, Mayor R. Extracellular signals, cell interactions and transcription factors involved in the induction of the neural crest cells[J]. Biological Research, 2002, 35(2):267-275
    Patterson L B, Parichy D M. Zebrafish pigment pattern formation:Insights into the development and evolution of adult form[J]. Annual Review of Genetics, 2019, 53(1):505-530
    Varghese T, Ebeneezar S, Sreekanth G B, et al. Into the pigmentation of fish:A physiological perspective[J]. International Journal of Science and Research, 2014, 3(12):1053
    蒋锐达, 赵敏, 赵三军, 等. 胚胎发育中神经嵴细胞迁移机制的研究进展[J]. 基因组学与应用生物学, 2018, 37(9):3799-3809

    Jiang R D, Zhao M, Zhao S J, et al. Research advance on the migration mechanism of neural crest cell during embryonic development[J]. Genomics and Applied Biology, 2018, 37(9):3799-3809(in Chinese)

    Williams J S, Hsu J Y, Rossi C C, et al. Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration[J]. Developmental Biology, 2018, 444(Suppl 1):S274-S286
    Eom D S, Inoue S, Patterson L B, et al. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11[J]. PLoS Genetics, 2012, 8(8):e1002899
    Braasch I, Brunet F, Volff J N, et al. Pigmentation pathway evolution after whole-genome duplication in fish[J]. Genome Biology and Evolution, 2009, 1:479-493
    Kottler V A, Künstner A, Schartl M. Pheomelanin in fish?[J]. Pigment Cell & Melanoma Research, 2015, 28(3):355-356
    Darias M J, Andree K B, Boglino A, et al. Coordinated regulation of chromatophore differentiation and melanogenesis during the ontogeny of skin pigmentation of Solea senegalensis (Kaup, 1858)[J]. PLoS One, 2013, 8(5):e63005
    Béjar J, Hong Y H, Schartl M. Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes[J]. Development, 2003, 130(26):6545-6553
    Parichy D M, Ransom D G, Paw B, et al. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio[J]. Development, 2000, 127(14):3031-3044
    Dooley C M, Mongera A, Walderich B, et al. On the embryonic origin of adult melanophores:The role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish[J]. Development, 2013, 140(5):1003-1013
    van Bebber F, Hruscha A, Willem M, et al. Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes[J]. Journal of Neurochemistry, 2013, 127(4):471-481
    Fujii R. The regulation of motile activity in fish chromatophores[J]. Pigment Cell Research, 2000, 13(5):300-319
    Kawauchi H, Kawazoe I, Tsubokawa M, et al. Characterization of melanin-concentrating hormone in chum salmon pituitaries[J]. Nature, 1983, 305(5932):321-323
    Logan D W, Burn S F, Jackson I J. Regulation of pigmentation in zebrafish melanophores[J]. Pigment Cell Research, 2006, 19(3):206-213
    Sugimoto M. Morphological color changes in fish:Regulation of pigment cell density and morphology[J]. Microscopy Research and Technique, 2002, 58(6):496-503
    Sugimoto M, Yuki M, Miyakoshi T, et al. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio[J]. Journal of Experimental Zoology Part A, Comparative Experimental Biology, 2005, 303(6):430-440
    van der Salm A L, Metz J R, Bonga S E, et al. Alpha-MSH, the melanocortin-1 receptor and background adaptation in the Mozambique tilapia, Oreochromis mossambicus[J]. General and Comparative Endocrinology, 2005, 144(2):140-149
    Dijkstra P D, Maguire S M, Harris R M, et al. The melanocortin system regulates body pigmentation and social behaviour in a colour polymorphic cichlid fish[J]. Proceedings of the Royal Society B:Biological Sciences, 2017, 284(1851):20162838
    Cal L, Suarez-Bregua P, Cerdá-Reverter J M, et al. Fish pigmentation and the melanocortin system[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 211:26-33
    Sefc K M, Brown A C, Clotfelter E D. Carotenoid-based coloration in cichlid fishes[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2014, 173:42-51
    Svensson, Wong. Carotenoid-based signals in behavioural ecology:A review[J]. Behaviour, 2011, 148(2):131-189
    Faivre B, Grégoire A, Préault M, et al. Immune activation rapidly mirrored in a secondary sexual trait[J]. Science, 2003, 300(5616):103
    Schweikert L E, Fitak R R, Johnsen S. De novo transcriptomics reveal distinct phototransduction signaling components in the retina and skin of a color-changing vertebrate, the hogfish (Lachnolaimus maximus)[J]. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204(5):475-485
    Kingston A C, Kuzirian A M, Hanlon R T, et al. Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception[J]. The Journal of Experimental Biology, 2015, 218(Pt 10):1596-1602
    Ban E, Kasai A, Sato M, et al. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia[J]. Pigment Cell Research, 2005, 18(5):360-369
    Ramirez M D, Oakley T H. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides[J]. The Journal of Experimental Biology, 2015, 218(Pt 10):1513-1520
    Chen S C, Xiao C F, Troje N F, et al. Functional characterisation of the chromatically antagonistic photosensitive mechanism of erythrophores in the tilapia Oreochromis niloticus[J]. The Journal of Experimental Biology, 2015, 218(Pt 5):748-756
    Chen S C, Robertson R M, Hawryshyn C W. Possible involvement of cone opsins in distinct photoresponses of intrinsically photosensitive dermal chromatophores in tilapia Oreochromis niloticus[J]. PLoS One, 2013, 8(8):e70342
    Shao C W, Bao B L, Xie Z Y, et al. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry[J]. Nature Genetics, 2017, 49(1):119-124
    Estévez A, Sameshima M, Ishikawa M, et al. Effect of diets containing low levels of methionine and oxidized oil on body composition, retina structure and pigmentation success of Japanese flounder[J]. Aquaculture Nutrition, 1997, 3(3):201-216
    Kanazawa A. Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish[J]. Journal of the World Aquaculture Society, 1993, 24(2):162-166
    Bolker J A, Hill C R. Pigmentation development in hatchery-reared flatfishes[J]. Journal of Fish Biology, 2000, 56(5):1029-1052
    Neuhauss S C, Biehlmaier O, Seeliger M W, et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish[J]. The Journal of Neuroscience:the official Journal of the Society for Neuroscience, 1999, 19(19):8603-8615
    García-Heras M S, Arroyo B, Simmons R E, et al. Pollutants and diet influence carotenoid levels and integument coloration in nestlings of an endangered raptor[J]. Science of the Total Environment, 2017, 603-604:299-307
    Larsen M G, Hansen K B, Henriksen P G, et al. Male zebrafish (Danio rerio) courtship behaviour resists the feminising effects of 17alpha-ethinyloestradiol-Morphological sexual characteristics do not[J]. Aquatic Toxicology, 2008, 87(4):234-244
    Laskey J W, Phelps P V. Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production[J]. Toxicology and Applied Pharmacology, 1991, 108(2):296-306
    Blas J, Pérez-Rodríguez L, Bortolotti G R, et al. Testosterone increases bioavailability of carotenoids:Insights into the honesty of sexual signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49):18633-18637
    Noriega N C, Hayes T B. DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus:A partial evaluation of the Hyperolius argus endocrine screen[J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2000, 126(2):231-237
    Allen T, Awasthi A, Rana S V S. Fish chromatophores as biomarkers of arsenic exposure[J]. Environmental Biology of Fishes, 2004, 71(1):7-11
    Prota G. Regulatory mechanisms of melanogenesis:Beyond the tyrosinase concept[J]. The Journal of Investigative Dermatology, 1993, 100(2 Suppl):156S-161S
    Jawor J M, Breitwisch R. Melanin ornaments, honesty, and sexual selection[J]. The Auk, 2003, 120(2):249-265
    Lerner A B. Effect of ions on melanin formation[J]. The Journal of Investigative Dermatology, 1952, 18(1):47-52
    Spickler J L, Swaddle J P, Gilson R L, et al. Sexually selected traits as bioindicators:Exposure to mercury affects carotenoid-based male bill color in zebra finches[J]. Ecotoxicology, 2020, 29(8):1138-1147
    Dauwe T, Eens M. Melanin- and carotenoid-dependent signals of great tits (Parus major) relate differently to metal pollution[J]. Die Naturwissenschaften, 2008, 95(10):969-973
    刘文敏, 张晓娜, 魏朋浩, 等. 双酚S长期暴露对雌性斑马鱼视觉系统的影响[J]. 中国海洋大学学报:自然科学版, 2018, 48(11):71-78

    Liu W M, Zhang X N, Wei P H, et al. Effects of long-term exposure to bisphenol S on the visual system of female zebrafish (Danio rerio)[J]. Periodical of Ocean University of China, 2018, 48(11):71-78(in Chinese)

    Yuan J, Zhang X L, Yu L, et al. Stage-specific malformations and phenotypic changes induced in embryos of amphibian (Xenopus tropicalis) by triphenyltin[J]. Ecotoxicology and Environmental Safety, 2011, 74(7):1960-1966
    Tanaka Y. Ecological risk assessment of pollutant chemicals:Extinction risk based on population-level effects[J]. Chemosphere, 2003, 53(4):421-425
  • 加载中
计量
  • 文章访问数:  2649
  • HTML全文浏览数:  2649
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-10-22

环境污染物干扰鱼类体色的研究及其生态毒理学意义

    通讯作者: 张纪亮, E-mail: jlzhang@hainnu.edu.cn
    作者简介: 杨莉(1993-),女,硕士研究生,研究方向为水生毒理学,E-mail:18437959270@163.com
  • 1. 河南科技大学动物科技学院, 洛阳 471000;
  • 2. 海南师范大学热带岛屿生态学教育部重点实验室, 海口 571158
基金项目:

国家自然科学基金资助项目(42067039)

摘要: 鱼类体色对环境污染物十分敏感,使其成为污染监测中理想的生物指示物,具有广阔的应用前景。鱼类体色调控复杂,涉及的基因丰富。本文综述污染物对鱼类体色的干扰作用及可能的干扰机制,为鱼类体色应用于污染监测相关生物标志物筛选及生态风险评估提供参考资料;同时,从鱼类色素合成和代谢、色素细胞发育和迁移、体色变化的调控等方面,综述鱼类体色的分子基础,有助于探究污染物干扰鱼类体色的可能靶点和毒理学机制,为鱼类体色生理学基础理论的发展提供重要参考资料。

English Abstract

参考文献 (91)

目录

/

返回文章
返回