双酚类化合物污染现状和内分泌干扰效应研究进展

黄苑, 张维, 王瑞国, 苏晓鸥. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1): 60-81. doi: 10.7524/AJE.1673-5897.20210324001
引用本文: 黄苑, 张维, 王瑞国, 苏晓鸥. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1): 60-81. doi: 10.7524/AJE.1673-5897.20210324001
Huang Yuan, Zhang Wei, Wang Ruiguo, Su Xiaoou. Advances on Pollution Status and Endocrine Disrupting Effects of Bisphenols[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 60-81. doi: 10.7524/AJE.1673-5897.20210324001
Citation: Huang Yuan, Zhang Wei, Wang Ruiguo, Su Xiaoou. Advances on Pollution Status and Endocrine Disrupting Effects of Bisphenols[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 60-81. doi: 10.7524/AJE.1673-5897.20210324001

双酚类化合物污染现状和内分泌干扰效应研究进展

    作者简介: 黄苑(1993-),女,博士研究生,研究方向为饲料毒理学,E-mail:13913004127@163.com
    通讯作者: 苏晓鸥, E-mail: suxiaoou@caas.cn
  • 基金项目:

    国家重点研发计划(2017YFC1600300)

  • 中图分类号: X171.5

Advances on Pollution Status and Endocrine Disrupting Effects of Bisphenols

    Corresponding author: Su Xiaoou, suxiaoou@caas.cn
  • Fund Project:
  • 摘要: 双酚类化合物(bisphenols,BPs)是合成碳酸聚酯、环氧树脂和聚丙烯酸酯等高分子聚合物的主要原料,在商业制造中广泛使用。经过度排放污染环境,并能通过食物链放大作用在动物和人体内蓄积。已经在水体、底泥、室内灰尘、食品以及动物和人体内检测到双酚A (bisphenol A,BPA)及其替代品或衍生物等多种BPs。BPs对性激素、甲状腺素和神经内分泌系统具有干扰效应,能影响机体生殖功能、性腺发育、神经行为和激素依赖性疾病的发展,已经成为危害人体健康的风险因子。多种BPA替代品的内分泌干扰效应甚至比BPA更强,但缺乏全面的内分泌干扰效应评估数据和对作用机制的深入研究。本文对BPs种类来源、污染现状及其内分泌干扰效应进行综述。
  • 加载中
  • Kavlock R J, Daston G P, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors:A report of the US EPA-sponsored workshop[J]. Environmental Health Perspectives, 1996, 104(Suppl. 4):715-740
    Welshons W V, Nagel S C, vom Saal F S. Large effects from small exposures. Ⅲ. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure[J]. Endocrinology, 2006, 147(6):s56-s69
    Chen D, Kannan K, Tan H L, et al. Bisphenol analogues other than BPA:Environmental occurrence, human exposure, and toxicity:A review[J]. Environmental Science&Technology, 2016, 50(11):5438-5453
    Lee H R, Jeung E B, Cho M H, et al. Molecular mechanism (s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors[J]. Journal of Cellular and Molecular Medicine, 2013, 17(1):1-11
    Costa E M F, Spritzer P M, Hohl A, et al. Effects of endocrine disruptors in the development of the female reproductive tract[J]. Arquivos Brasileiros de Endocrinologia e Metabologia, 2014, 58(2):153-161
    National Toxicology Program (NTP). NTP Research Report on the CLARITY-BPA core study:A perinatal and chronic extended-dose-range study of bisphenol A in rats[R]. Washington DC:National Institute of Environmental Health Sciences, 2018
    Willhite C C, Daston G P. Bisphenol exposure, hazard and regulation[J]. Toxicology, 2019, 425:152243
    石珏.双酚A暴露方式对线虫生长生殖发育及凋亡的影响[D].合肥:中国科学技术大学, 2018:1-4Shi J. Effects of bisphenol A on the growth, reproductive development and apoptosis in Caenorhabditis elegans under different exposure ways[D]. Hefei:University of Science and Technology of China, 2018:1

    -4(in Chinese)

    梁栋.双酚类化合物的环境雌激素效应研究[D].北京:中国科学院大学, 2014:11
    Usman A, Ikhlas S, Ahmad M. Occurrence, toxicity and endocrine disrupting potential of bisphenol-B and bisphenol-F:A mini-review[J]. Toxicology Letters, 2019, 312:222-227
    Cunha S C, Fernandes J O. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS)[J]. Talanta, 2010, 83(1):117-125
    Alabi A, Caballero-Casero N, Rubio S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection[J]. Journal of Chromatography A, 2014, 1336:23-33
    Cunha S C, Almeida C, Mendes E, et al. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry[J]. Food Additives&Contaminants:Part A, 2011, 28(4):513-526
    Cunha S C, Cunha C, Ferreira A R, et al. Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2012, 404(8):2453-2463
    Grumetto L, Gennari O, Montesano D, et al. Determination of five bisphenols in commercial milk samples by liquid chromatography coupled to fluorescence detection[J]. Journal of Food Protection, 2013, 76(9):1590-1596
    Kuruto-Niwa R, Nozawa R, Miyakoshi T, et al. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system[J]. Environmental Toxicology and Pharmacology, 2005, 19(1):121-130
    Simoneau C, Valzacchi S, Morkunas V, et al. Comparison of migration from polyethersulphone and polycarbonate baby bottles[J]. Food Additives&Contaminants:Part A, 2011, 28(12):1763-1768
    Wu L H, Zhang X M, Wang F, et al. Occurrence of bisphenol S in the environment and implications for human exposure:A short review[J]. Science of the Total Environment, 2018, 615:87-98
    Lu S Y, Yu Y L, Ren L, et al. Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact[J]. Science of the Total Environment, 2018, 621:1389-1396
    Rochester J R, Bolden A L. Bisphenol S and F:A systematic review and comparison of the hormonal activity of bisphenol A substitutes[J]. Environmental Health Perspectives, 2015, 123(7):643-650
    Lee S, Liao C Y, Song G J, et al. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea[J]. Chemosphere, 2015, 119:1000-1006
    Ji K, Choi K. Endocrine disruption potentials of bisphenol A alternatives:are bisphenol A alternatives safe from endocrine disruption?[J]. Korean Journal of Environmental Health Sciences, 2013, 39(1):1-18
    Yu X H, Xue J C, Yao H, et al. Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the US EPA targeted national sewage sludge survey[J]. Journal of Hazardous Materials, 2015, 299:733-739
    Im J, L ffler F E. Fate of bisphenol A in terrestrial and aquatic environments[J]. Environmental Science&Technology, 2016, 50(16):8403-8416
    Jin H B, Zhu L Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103:343-351
    Wan Y J, Xia W, Yang S Y, et al. Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China:Implications for exposure through drinking water[J]. Chemosphere, 2018, 199:595-602
    Si W, Cai Y F, Liu J C, et al. Investigating the role of colloids on the distribution of bisphenol analogues in surface water from an ecological demonstration area, China[J]. Science of the Total Environment, 2019, 673:699-707
    Zhang H F, Zhang Y P, Li J B, et al. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China[J]. Science of the Total Environment, 2019, 655:607-613
    Liu Y H, Zhang S H, Song N H, et al. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake):Implications for ecological and human health risk[J]. Science of the Total Environment, 2017, 599-600:1090-1098
    Wang Y X, Liu C, Shen Y, et al. Urinary levels of bisphenol A, F and S and markers of oxidative stress among healthy adult men:Variability and association analysis[J]. Environment International, 2019, 123:301-309
    Zheng C Y, Liu J C, Ren J H, et al. Occurrence, distribution and ecological risk of bisphenol analogues in the surface water from a water diversion project in Nanjing, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(18):3296
    Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572
    Schmidt N, Castro-Jiménez J, Fauvelle V, et al. Occurrence of organic plastic additives in surface waters of the Rhône River (France)[J]. Environmental Pollution, 2020, 257:113637
    Liao C Y, Liu F, Moon H B, et al. Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea:Spatial and temporal distributions[J]. Environmental Science&Technology, 2012, 46(21):11558-11565
    Yang Y J, Lu L B, Zhang J, et al. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1328:26-34
    Wang W, Abualnaja K O, Asimakopoulos A G, et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries[J]. Environment International, 2015, 83:183-191
    Song S J, Ruan T, Wang T, et al. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China[J]. Environmental Science&Technology, 2012, 46(24):13136-13143
    Ye X Y, Wong L Y, Kramer J, et al. Urinary concentrations of bisphenol A and three other bisphenols in convenience samples of US adults during 2000-2014[J]. Environmental Science&Technology, 2015, 49(19):11834-11839
    Liao C Y, Liu F, Alomirah H, et al. Bisphenol S in urine from the United States and seven Asian countries:Occurrence and human exposures[J]. Environmental Science&Technology, 2012, 46(12):6860-6866
    Liu Y H, Yan Z Y, Zhang Q, et al. Urinary levels, composition profile and cumulative risk of bisphenols in preschool-aged children from Nanjing suburb, China[J]. Ecotoxicology and Environmental Safety, 2019, 172:444-450
    Xue J C, Wu Q, Sakthivel S, et al. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children[J]. Environmental Research, 2015, 137:120-128
    Asimakopoulos A G, Xue J C, de Carvalho B P, et al. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia[J]. Environmental Research, 2016, 150:573-581
    Deceuninck Y, Bichon E, Marchand P, et al. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2015, 407(9):2485-2497
    Liu J Y, Li J G, Wu Y N, et al. Bisphenol A metabolites and bisphenol S in paired maternal and cord serum[J]. Environmental Science&Technology, 2017, 51(4):2456-2463
    Zhou J, Xu J J, Cong J M, et al. Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk[J]. Journal of Chromatography A, 2018, 1532:20-29
    Zhou J, Chen X H, Pan S D, et al. Contamination status of bisphenol A and its analogues (bisphenol S, F and B) in foodstuffs and the implications for dietary exposure on adult residents in Zhejiang Province[J]. Food Chemistry, 2019, 294:160-170
    Zhou Q H, Jin Z H, Li J, et al. A novel air-assisted liquid-liquid microextraction based on in situ phase separation for the HPLC determination of bisphenols migration from disposable lunch boxes to contacting water[J]. Talanta, 2018, 189:116-121
    Covaci A, Hond E D, Geens T, et al. Urinary BPA measurements in children and mothers from six European member states:Overall results and determinants of exposure[J]. Environmental Research, 2015, 141:77-85
    Hartle J C, Navas-Acien A, Lawrence R S. The consumption of canned food and beverages and urinary bisphenol A concentrations in NHANES 2003-2008[J]. Environmental Research, 2016, 150:375-382
    Cao X L, Perez-Locas C, Robichaud A, et al. Levels and temporal trend of bisphenol A in composite food samples from Canadian Total Diet Study 2008-2012[J]. Food Additives&Contaminants:Part A, 2015, 32(12):2154-2160
    Liu J Y, Wattar N, Field C J, et al. Exposure and dietary sources of bisphenol A (BPA) and BPA-alternatives among mothers in the APrON cohort study[J]. Environment International, 2018, 119:319-326
    Xiong L, Yan P, Chu M, et al. A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk[J]. Food Chemistry, 2018, 244:371-377
    Cunha S C, Oliveira C, Fernandes J O. Development of QuEChERS-based extraction and liquid chromatography-tandem mass spectrometry method for simultaneous quantification of bisphenol A and tetrabromobisphenol A in seafood:Fish, bivalves, and seaweeds[J]. Analytical and Bioanalytical Chemistry, 2017, 409(1):151-160
    Zhang H, Quan Q, Zhang M Y, et al. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students:Implications for human exposure[J]. Chemosphere, 2020, 247:125987
    Thayer K A, Taylor K W, Garantziotis S, et al. Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isopro oxyphenyl sulfone (BPSIP) in urine and blood of cashiers[J]. Environmental Health Perspectives, 2016, 124(4):437-444
    González N, Cunha S C, Monteiro C, et al. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator[J]. Environmental Research, 2019, 176:108576
    Song S M, Duan Y S, Zhang T, et al. Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China:Associations with fasting blood glucose[J]. Ecotoxicology and Environmental Safety, 2019, 169:822-828
    Mu X Y, Huang Y, Li X X, et al. Developmental effects and estrogenicity of bisphenol A alternatives in a zebrafish embryo model[J]. Environmental Science&Technology, 2018, 52(5):3222-3231
    Lee J Y, Kim S, Choi K, et al. Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17β -estradiol using GH3 cells[J]. Toxicology in Vitro, 2018, 53:107-113
    Ullah A, Pirzada M, Jahan S, et al. Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S:Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats[J]. Chemosphere, 2018, 209:508-516
    Ji K, Hong S, Kho Y, et al. Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish[J]. Environmental Science&Technology, 2013, 47(15):8793-8800
    Pollock T, Greville L J, Weaver R E, et al. Bisphenol S modulates concentrations of bisphenol A and oestradiol in female and male mice[J]. Xenobiotica, 2019, 49(5):540-548
    Berni M, Gigante P, Bussolati S, et al. Bisphenol S, a bisphenol A alternative, impairs swine ovarian and adipose cell functions[J]. Domestic Animal Endocrinology, 2019, 66:48-56
    Campen K A, Lavallee M, Combelles C. The impact of bisphenol S on bovine granulosa and theca cells[J]. Reproduction in Domestic Animals, 2018, 53(2):450-457
    Gingrich J, Pu Y, Roberts J, et al. Gestational bisphenol S impairs placental endocrine function and the fusogenic trophoblast signaling pathway[J]. Archives of Toxicology, 2018, 92(5):1861-1876
    Yang Q, Yang X H, Liu J N, et al. Exposure to bisphenol B disrupts steroid hormone homeostasis and gene expression in the hypothalamic-pituitary-gonadal axis of zebrafish[J]. Water, Air,&Soil Pollution, 2017, 228(3):1-12
    Yang X X, Liu Y C, Li J, et al. Exposure to bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish[J]. Environmental Toxicology, 2016, 31(3):285-294
    Jones R L, Lang S A, Kendziorski J A, et al. Use of a mouse model of experimentally induced endometriosis to evaluate and compare the effects of bisphenol A and bisphenol AF exposure[J]. Environmental Health Perspectives, 2018, 126(12):127004
    Zhang Z B, Hu Y, Guo J L, et al. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice[J]. Nature Communications, 2017, 8:14585
    Wang T, Han J, Duan X, et al. The toxic effects and possible mechanisms of bisphenol A on oocyte maturation of porcine in vitro [J]. Oncotarget, 2016, 7(22):32554-32565
    Li Y, Luh C J, Burns K A, et al. Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes[J]. Environmental Health Perspectives, 2013, 121(4):459-466
    Li Y, Burns K A, Arao Y, et al. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro [J]. Environmental Health Perspectives, 2012, 120(7):1029-1035
    Conley J M, Hannas B R, Furr J R, et al. A demonstration of the uncertainty in predicting the estrogenic activity of individual chemicals and mixtures from an in vitro estrogen receptor transcriptional activation assay (T47D-KBluc) to the in vivo uterotrophic assay using oral exposure[J]. Toxicological Sciences, 2016, 153(2):382-395
    Mesnage R, Phedonos A, Arno M, et al. Editor's Highlight:Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2017, 158(2):431-443
    Kojima H, Takeuchi S, Sanoh S, et al. Profiling of bisphenol A and eight its analogues on transcriptional activity via human nuclear receptors[J]. Toxicology, 2019, 413:48-55
    Le Fol V, At-Assa S, Sonavane M, et al. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays[J]. Ecotoxicology and Environmental Safety, 2017, 142:150-156
    Molina-Molina J M, Amaya E, Grimaldi M, et al. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors[J]. Toxicology and Applied Pharmacology, 2013, 272(1):127-136
    Kang J S, Choi J S, Kim W K, et al. Estrogenic potency of bisphenol S, polyethersulfone and their metabolites generated by the rat liver S9 fractions on a MVLN cell using a luciferase reporter gene assay[J]. Reproductive Biology and Endocrinology, 2014, 12:102
    Cano-Nicolau J, Vaillant C, Pellegrini E, et al. Estrogenic effects of several BPA analogs in the developing zebrafish brain[J]. Frontiers in Neuroscience, 2016, 10:112
    Moreman J, Lee O, Trznadel M, et al. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae[J]. Environmental Science&Technology, 2017, 51(21):12796-12805
    Feng Y X, Yin J, Jiao Z H, et al. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats[J]. Toxicology Letters, 2012, 211(2):201-209
    Li J, Sheng N, Cui R N, et al. Gestational and lactational exposure to bisphenol AF in maternal rats increases testosterone levels in 23-day-old male offspring[J]. Chemosphere, 2016, 163:552-561
    Ullah A, Pirzada M, Jahan S, et al. Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats:A focus on the possible hormonal mode of action[J]. Food and Chemical Toxicology, 2018, 121:24-36
    Teng C, Goodwin B, Shockley K, et al. Bisphenol A affects androgen receptor function via multiple mechanisms[J]. Chemico-Biological Interactions, 2013, 203(3):556-564
    Rosenmai A K, Dybdahl M, Pedersen M, et al. Are structural analogues to bisphenol A safe alternatives?[J]. Toxicological Sciences, 2014, 139(1):35-47
    Tang T L, Yang Y, Chen Y W, et al. Thyroid disruption in zebrafish larvae by short-term exposure to bisphenol AF[J]. International Journal of Environmental Research and Public Health, 2015, 12(10):13069-13084
    Kwon B, Kho Y, Kim P G, et al. Thyroid endocrine disruption in male zebrafish following exposure to binary mixture of bisphenol AF and sulfamethoxazole[J]. Environmental Toxicology and Pharmacology, 2016, 48:168-174
    Huang G M, Tian X F, Fang X D, et al. Waterborne exposure to bisphenol F causes thyroid endocrine disruption in zebrafish larvae[J]. Chemosphere, 2016, 147:188-194
    Zhang Y F, Ren X M, Li Y Y, et al. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo [J]. Environmental Pollution, 2018, 237:1072-1079
    Lu L P, Zhan T J, Ma M, et al. Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β :in vitro, in vivo , and molecular dynamics simulation study[J]. Environmental Science&Technology, 2018, 52(11):6617-6625
    Lei B, Xu J, Peng W, et al. In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay[J]. Environmental Toxicology, 2017, 32(1):278-289
    Kinch C D, Ibhazehiebo K, Jeong J H, et al. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5):1475-1480
    Qiu W H, Zhao Y L, Yang M, et al. Actions of bisphenol A and bisphenol S on the reproductive neuroendocrine system during early development in zebrafish[J]. Endocrinology, 2016, 157(2):636-647
    Mi P, Zhang Q P, Zhang S H, et al. The effects of fluorene-9-bisphenol on female zebrafish (Danio rerio) reproductive and exploratory behaviors[J]. Chemosphere, 2019, 228:398-411
    Gong M, Huai Z Q, Song H, et al. Effects of maternal exposure to bisphenol AF on emotional behaviors in adolescent mice offspring[J]. Chemosphere, 2017, 187:140-146
    Ji X M, Shi L L, Yin X, et al. Sex-and developmental stage-dependent effects of fluorene-9-bisphenol exposure on emotional behaviors in mice[J]. Chemosphere, 2019, 225:890-896
    Kolatorova L, Vitku J, Hampl R, et al. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes[J]. Environmental Research, 2018, 163:115-122
    Castro B, Sánchez P, Torres J M, et al. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats[J]. Environmental Research, 2015, 142:281-287
  • 加载中
计量
  • 文章访问数:  4748
  • HTML全文浏览数:  4748
  • PDF下载数:  263
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-24

双酚类化合物污染现状和内分泌干扰效应研究进展

    通讯作者: 苏晓鸥, E-mail: suxiaoou@caas.cn
    作者简介: 黄苑(1993-),女,博士研究生,研究方向为饲料毒理学,E-mail:13913004127@163.com
  • 中国农业科学院农业质量标准与检测技术研究所, 农业农村部农产品质量安全研究重点实验室, 北京 100081
基金项目:

国家重点研发计划(2017YFC1600300)

摘要: 双酚类化合物(bisphenols,BPs)是合成碳酸聚酯、环氧树脂和聚丙烯酸酯等高分子聚合物的主要原料,在商业制造中广泛使用。经过度排放污染环境,并能通过食物链放大作用在动物和人体内蓄积。已经在水体、底泥、室内灰尘、食品以及动物和人体内检测到双酚A (bisphenol A,BPA)及其替代品或衍生物等多种BPs。BPs对性激素、甲状腺素和神经内分泌系统具有干扰效应,能影响机体生殖功能、性腺发育、神经行为和激素依赖性疾病的发展,已经成为危害人体健康的风险因子。多种BPA替代品的内分泌干扰效应甚至比BPA更强,但缺乏全面的内分泌干扰效应评估数据和对作用机制的深入研究。本文对BPs种类来源、污染现状及其内分泌干扰效应进行综述。

English Abstract

参考文献 (98)

目录

/

返回文章
返回