进化毒理学:生态毒理学研究的新视角
Evolutionary Toxicology: New Perspective of Ecotoxicology
-
摘要: 环境污染是驱动生物适应性进化的重要因素之一。近年来,随着分子生物学的迅猛发展和进化生物学理论的逐步更新,进化毒理学(evolutionary toxicology)这一交叉学科快速发展。进化毒理学研究是运用分子生物学和种群遗传学的方法,以进化生物学和保护遗传学的理论和概念为基础,试图描述生物体适应环境的机制、原则以及环境污染对生物体适应过程的影响与作用。本文回顾了进化毒理学的理论发展,归纳总结了进化毒理学的研究范畴和主要研究内容,并对进化毒理学在未来生态风险评估中的应用、进化毒理学的研究方向以及相关理论进行了展望。本文旨在对进化毒理学这一新兴交叉学科进行梳理和简介,为丰富生态毒理学研究提供理论支持,同时也为解决日益加剧的环境污染问题提供新的研究思路与途径。Abstract: Environmental pollution has become one of the significant driving factors behind the evolution of diverse organisms. With the advance in molecular biology and the theory of evolutionary biology, a new interdiscipline called evolutionary toxicology is growing. Based on the theory of evolutionary biology and conservation genetics, evolutionary toxicology aims to investigate how the polluted environment affects organisms and how the organisms adapt to the polluted environment. Research in evolutionary toxicology uses experimental design familiar to the ecotoxicologist with matched reference and contaminated sites and selection of sentinel species. Here, we reviewed the theorical development of evolutionary toxicology and summarized the scope and field of evolutionary toxicology research. Additionally, the prospects of evolutionary toxicology are presented, which include the application of evolutionary toxicology in ecological risk assessment, the research of evolutionary toxicology under the omics era, and evo-evolutionary dynamics in toxicology. It is anticipated that the review and introduction of this emerging interdisciplinary subject could provide theoretical support and insights into the study of ecotoxicology and management of serious environmental problems.
-
Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems[J]. Science, 1997, 277(5325):494-499 徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报, 1995, 19(2):171-185 Xu L H, Zhang Y Y, Chen Y Y. The advances of molecular ecotoxicology and its significance in water environment protection[J]. Acta Hydrobiologica Sinica, 1995, 19(2):171-185(in Chinese)
Bickham J W. The four cornerstones of evolutionary toxicology[J]. Ecotoxicology, 2011, 20(3):497-502 Shugart L R, Theodorakis C W, Bickham J W. Evolutionary Toxicology[M]//DeWoody J A, Bickham J W, Michler C H, et al. eds. Molecular Approaches in Natural Resource Conservation and Management. Cambridge:Cambridge University Press:320-362 端正花,朱琳.生态毒理基因组学:后基因组时代生态毒理学的新领域[J].生态毒理学报, 2007, 2(2):136-141 Duan Z H, Zhu L. Ecotoxicogenomics:The new challenge of ecotoxicology in the post-genomic era[J]. Asian Journal of Ecotoxicology, 2007, 2(2):136-141(in Chinese)
Oziolor E M, Bickham J W, Matson C W. Evolutionary toxicology in an omics world[J]. Evolutionary Applications, 2017, 10(8):752-761 Reid N M, Whitehead A. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales:Toward a vision of predictive ecotoxicology[J]. Briefings in Functional Genomics, 2015, 15(5):358-364 van Straalen N M, Janssens T K S, Roelofs D. Micro-evolution of toxicant tolerance:From single genes to the genome's tangled bank[J]. Ecotoxicology, 2011, 20(3):574-579 Coutellec M A, Barata C. An introduction to evolutionary processes in ecotoxicology[J]. Ecotoxicology, 2011, 20(3):493-496 Coutellec M A, Barata C. Special issue on long-term ecotoxicological effects:An introduction[J]. Ecotoxicology, 2013, 22(5):763-766 Bougas B, Normandeau E, Grasset J, et al. Transcriptional response of yellow perch to changes in ambient metal concentrations:A reciprocal field transplantation experiment[J]. Aquatic Toxicology, 2016, 173:132-142 García-Balboa C, Baselga-Cervera B, García-Sanchez A, et al. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining:An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments[J]. Aquatic Toxicology, 2013, 144-145:116-123 Reid N M, Proestou D A, Clark B W, et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish[J]. Science, 2016, 354(6317):1305-1308 Bickham J W, Smolen M J. Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology[J]. Infectious Diseases of Poverty, 1994, 102(Suppl.12):25-28 Harrison C M. Inheritance of resistance to DDT in the housefly, Musca domestica L.[J]. Nature, 1951, 167(4256):855-856 Kettlewell H B D. Selection experiments on industrial melanism in the Lepidoptera[J]. Heredity, 1955, 9(3):323-342 Klerks P L, Weis J S. Genetic adaptation to heavy metals in aquatic organisms:A review[J]. Environmental Pollution, 1987, 45(3):173-205 Nacci D E, Champlin D, Jayaraman S. Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs)[J]. Estuaries and Coasts, 2010, 33(4):853-864 Oziolor E M, Matson C W. Evolutionary Toxicology:Population Adaptation in Response to Anthropogenic Pollution[M]//Riesch R, Tobler M, Plath M. Extremophile FIshes. Heidelberg:Springer, Cham., 2015:247-277 Wirgin I, Roy N K, Loftus M, et al. Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River[J]. Science, 2011, 331(6022):1322-1325 Meyer J N. Cytochrome P4501A (CYP1A) in killifish ( Fundulus heteroclitus ):Heritability of altered expression and relationship to survival in contaminated sediments[J]. Toxicological Sciences, 2002, 68(1):69-81 Noyes P D, McElwee M K, Miller H D, et al. The toxicology of climate change:Environmental contaminants in a warming world[J]. Environment International, 2009, 35(6):971-986 Sarret G, Manceau A, Cuny D, et al. Mechanisms of lichen resistance to metallic pollution[J]. Environmental Science&Technology, 1998, 32(21):3325-3330 Bickham J W, Sandhu S, Hebert P D N, et al. Effects of chemical contaminants on genetic diversity in natural populations:Implications for biomonitoring and ecotoxicology[J]. Mutation Research/Reviews in Mutation Research, 2000, 463(1):33-51 Blaustein A R, Belden L K. Amphibian defenses against ultraviolet-B radiation[J]. Evolution&Development, 2003, 5(1):89-97 Marquis O, Miaud C, Ficetola G F, et al. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients[J]. Aquatic Toxicology, 2009, 95(2):152-161 Poynton H C, Hasenbein S, Benoit J B, et al. The toxicogenome of Hyalella azteca :A model for sediment ecotoxicology and evolutionary toxicology[J]. Environmental Science&Technology, 2018, 52(10):6009-6022 Major K M, Weston D P, Lydy M J, et al. Unintentional exposure to terrestrial pesticides drives widespread and predictable evolution of resistance in freshwater crustaceans[J]. Evolutionary Applications, 2018, 11(5):748-761 Weston D P, Poynton H C, Wellborn G A, et al. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41):16532-16537 Wen Z M, Rupasinghe S, Niu G D, et al. CYP6B1 and CYP6B3 of the black swallowtail ( Papilio polyxenes ):Adaptive evolution through subfunctionalization[J]. Molecular Biology and Evolution, 2006, 23(12):2434-2443 Coyle P, Philcox J C, Carey L C, et al. Metallothionein:The multipurpose protein[J]. Cellular and Molecular Life Sciences, 2002, 59(4):627-647 Maroni G, Wise J, Young J E, et al. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster [J]. Genetics, 1987, 117(4):739-744 Maron L G, Guimarães C T, Kirst M, et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13):5241-5246 Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required Cis -regulatory changes and triplication of HMA4[J]. Nature, 2008, 453(7193):391-395 Roux M, Schwessinger B, Albrecht C, et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. The Plant Cell, 2011, 23(6):2440-2455 Medina M H, Correa J A, Barata C. Micro-evolution due to pollution:Possible consequences for ecosystem responses to toxic stress[J]. Chemosphere, 2007, 67(11):2105-2114 van Straalen N M, Timmermans M J T N. Genetic variation in toxicant-stressed populations:An evaluation of the"genetic erosion "hypothesis[J]. Human and Ecological Risk Assessment:An International Journal, 2002, 8(5):983-1002 Laporte M, Pavey S A, Rougeux C, et al. RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels[J]. Molecular Ecology, 2016, 25(1):219-237 Baker R J, Dickins B, Wickliffe J K, et al. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent[J]. Evolutionary Applications, 2017, 10(8):784-791 Jernfors T, Kesäniemi J, Lavrinienko A, et al. Transcriptional upregulation of DNA damage response genes in bank voles ( Myodes glareolus ) inhabiting the Chernobyl exclusion zone[J]. Frontiers in Environmental Science, 2018, 5:95 Rolshausen G, Phillip D A, Beckles D M, et al. Do stressful conditions make adaptation difficult?Guppies in the oil-polluted environments of southern Trinidad[J]. Evolutionary Applications, 2015, 8(9):854-870 Piñeira J, Quesada H, Rolán-Alvarez E, et al. Genetic impact of the Prestige oil spill in wild populations of a poor dispersal marine snail from intertidal rocky shores[J]. Marine Pollution Bulletin, 2008, 56(2):270-281 Leung M C K, Procter A C, Goldstone J V, et al. Applying evolutionary genetics to developmental toxicology and risk assessment[J]. Reproductive Toxicology, 2017, 69:174-186 Hahn M E. Aryl hydrocarbon receptors:Diversity and evolution[J]. Chemico-Biological Interactions, 2002, 141(1-2):131-160 Hahn M E, Karchner S I, Merson R R. Diversity as opportunity:Insights from 600 million years of AHR evolution[J]. Current Opinion in Toxicology, 2017, 2:58-71 Guénard G, von der Ohe P C, de Zwart D, et al. Using phylogenetic information to predict species tolerances to toxic chemicals[J]. Ecological Applications, 2011, 21(8):3178-3190 Carew M E, Miller A D, Hoffmann A A. Phylogenetic signals and ecotoxicological responses:Potential implications for aquatic biomonitoring[J]. Ecotoxicology, 2011, 20(3):595-606 Pelletier F, Garant D, Hendry A P. Eco-evolutionary dynamics[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1523):1483-1489 Whitehead A. Evolutionary genomics of environmental pollution[J]. Advances in Experimental Medicine and Biology, 2014, 781:321-337 Lee C E, Remfert J L, Opgenorth T, et al. Evolutionary responses to crude oil from the Deepwater Horizon oil spill by the copepod Eurytemora affinis [J]. Evolutionary Applications, 2017, 10(8):813-828 Osterberg J S, Cammen K M, Schultz T F, et al. Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish ( Fundulus heteroclitus )[J]. Aquatic Toxicology, 2018, 200:73-82 Lindberg C D, Jayasundara N, Kozal J S, et al. Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus [J]. Ecotoxicology, 2017, 26(3):435-448 di Giulio R T, Clark B W. The Elizabeth River story:A case study in evolutionary toxicology[J]. Journal of Toxicology and Environmental Health, Part B, 2015, 18(6):259-298 Oziolor E M, DeSchamphelaere K, Lyon D, et al. Evolutionary toxicology:An informational tool for chemical regulation?[J]. Environmental Toxicology and Chemistry, 2020, 39(2):257-268 van Straalen N M, Feder M E. Ecological and evolutionary functional genomics:How can it contribute to the risk assessment of chemicals?[J]. Environmental Science&Technology, 2012, 46(1):3-9 Zhang Q, Wang Z H, Zhang W F, et al. The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels[J]. Nature Cell Biology, 2021, 23(8):870-880 Zhang Q, Wu X Y, Chen P, et al. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling[J]. Cell, 2018, 174(4):870-883.e17 Agra A R, Soares A M V M, Barata C. Life-history consequences of adaptation to pollution." Daphnia longispina clones historically exposed to copper"[J]. Ecotoxicology, 2011, 20(3):552-562 Fisker K V, Sørensen J G, Damgaard C, et al. Genetic adaptation of earthworms to copper pollution:Is adaptation associated with fitness costs in Dendrobaena octaedra ?[J]. Ecotoxicology, 2011, 20(3):563-573 Jansen M, Coors A, Stoks R, et al. Evolutionary ecotoxicology of pesticide resistance:A case study in Daphnia [J]. Ecotoxicology, 2011, 20(3):543-551 Dutilleul M, Réale D, Goussen B, et al. Adaptation costs to constant and alternating polluted environments[J]. Evolutionary Applications, 2017, 10(8):839-851 Bélanger-Deschênes S, Couture P, Campbell P G, et al. Evolutionary change driven by metal exposure as revealed by coding SNP genome scan in wild yellow perch ( Perca flavescens )[J]. Ecotoxicology, 2013, 22(5):938-957 Whitehead A, Clark B W, Reid N M, et al. When evolution is the solution to pollution:Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus ) populations[J]. Evolutionary Applications, 2017, 10(8):762-783 Zhou S F, Gao Y H, Jiang W Q, et al. Interactions of herbs with cytochrome P450[J]. Drug Metabolism Reviews, 2003, 35(1):35-98 Posthuma L, van Straalen N M. Heavy-metal adaptation in terrestrial invertebrates:A review of occurrence, genetics, physiology and ecological consequences[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology, 1993, 106(1):11-38 Bohmann K, Evans A, Gilbert M T, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends in Ecology&Evolution, 2014, 29(6):358-367 Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4):423-425 Thomsen P F, Willerslev E. Environmental DNA:An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation, 2015, 183:4-18 Cothran R D, Brown J M, Relyea R A. Proximity to agriculture is correlated with pesticide tolerance:Evidence for the evolution of amphibian resistance to modern pesticides[J]. Evolutionary Applications, 2013, 6(5):832-841 Fardisi M, Gondhalekar A D, Ashbrook A R, et al. Rapid evolutionary responses to insecticide resistance management interventions by the German cockroach ( Blattella germanica L.)[J]. Scientific Reports, 2019, 9(1):8292 Hua J, Jones D K, Mattes B M, et al. The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations[J]. Evolutionary Applications, 2015, 8(6):586-596 Hua J, Wuerthner V P, Jones D K, et al. Evolved pesticide tolerance influences susceptibility to parasites in amphibians[J]. Evolutionary Applications, 2017, 10(8):802-812 Råberg L. How to live with the enemy:Understanding tolerance to parasites[J]. PLoS Biology, 2014, 12(11):e1001989 阎凯,李博,韩全保,等.进化生态毒理学研究进展[M]//段昌群.生态科学进展(第五卷).北京:高等教育出版社, 2010:125-138Yan K, Li B, Han Q B, et al. Advances in Evolutionary Ecotoxicology[M]//Duan C. Advances in Ecological Sciences (Vol. 5). Beijing:Higher Education Press, 2010 :125-138(in Chinese)
计量
- 文章访问数: 2972
- HTML全文浏览数: 2972
- PDF下载数: 135
- 施引文献: 0