进化毒理学:生态毒理学研究的新视角

张智, 王菊英, 王新红, 穆景利. 进化毒理学:生态毒理学研究的新视角[J]. 生态毒理学报, 2022, 17(1): 82-92. doi: 10.7524/AJE.1673-5897.20210629001
引用本文: 张智, 王菊英, 王新红, 穆景利. 进化毒理学:生态毒理学研究的新视角[J]. 生态毒理学报, 2022, 17(1): 82-92. doi: 10.7524/AJE.1673-5897.20210629001
Zhang Zhi, Wang Juying, Wang Xinhong, Mu Jingli. Evolutionary Toxicology: New Perspective of Ecotoxicology[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 82-92. doi: 10.7524/AJE.1673-5897.20210629001
Citation: Zhang Zhi, Wang Juying, Wang Xinhong, Mu Jingli. Evolutionary Toxicology: New Perspective of Ecotoxicology[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 82-92. doi: 10.7524/AJE.1673-5897.20210629001

进化毒理学:生态毒理学研究的新视角

    作者简介: 张智(1992-),男,博士,研究方向为分子与进化生态学,E-mail:zhizhang@mju.edu.cn
    通讯作者: 穆景利, E-mail: jlmu@mju.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41776118)

    福建省海洋经济专项(ZHHY-2019-1)

    福建省教育厅中青年教师教育科研项目(JAT200445)

  • 中图分类号: X171.5

Evolutionary Toxicology: New Perspective of Ecotoxicology

    Corresponding author: Mu Jingli, jlmu@mju.edu.cn
  • Fund Project:
  • 摘要: 环境污染是驱动生物适应性进化的重要因素之一。近年来,随着分子生物学的迅猛发展和进化生物学理论的逐步更新,进化毒理学(evolutionary toxicology)这一交叉学科快速发展。进化毒理学研究是运用分子生物学和种群遗传学的方法,以进化生物学和保护遗传学的理论和概念为基础,试图描述生物体适应环境的机制、原则以及环境污染对生物体适应过程的影响与作用。本文回顾了进化毒理学的理论发展,归纳总结了进化毒理学的研究范畴和主要研究内容,并对进化毒理学在未来生态风险评估中的应用、进化毒理学的研究方向以及相关理论进行了展望。本文旨在对进化毒理学这一新兴交叉学科进行梳理和简介,为丰富生态毒理学研究提供理论支持,同时也为解决日益加剧的环境污染问题提供新的研究思路与途径。
  • 加载中
  • Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth's ecosystems[J]. Science, 1997, 277(5325):494-499
    徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报, 1995, 19(2):171-185

    Xu L H, Zhang Y Y, Chen Y Y. The advances of molecular ecotoxicology and its significance in water environment protection[J]. Acta Hydrobiologica Sinica, 1995, 19(2):171-185(in Chinese)

    Bickham J W. The four cornerstones of evolutionary toxicology[J]. Ecotoxicology, 2011, 20(3):497-502
    Shugart L R, Theodorakis C W, Bickham J W. Evolutionary Toxicology[M]//DeWoody J A, Bickham J W, Michler C H, et al. eds. Molecular Approaches in Natural Resource Conservation and Management. Cambridge:Cambridge University Press:320-362
    端正花,朱琳.生态毒理基因组学:后基因组时代生态毒理学的新领域[J].生态毒理学报, 2007, 2(2):136-141

    Duan Z H, Zhu L. Ecotoxicogenomics:The new challenge of ecotoxicology in the post-genomic era[J]. Asian Journal of Ecotoxicology, 2007, 2(2):136-141(in Chinese)

    Oziolor E M, Bickham J W, Matson C W. Evolutionary toxicology in an omics world[J]. Evolutionary Applications, 2017, 10(8):752-761
    Reid N M, Whitehead A. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales:Toward a vision of predictive ecotoxicology[J]. Briefings in Functional Genomics, 2015, 15(5):358-364
    van Straalen N M, Janssens T K S, Roelofs D. Micro-evolution of toxicant tolerance:From single genes to the genome's tangled bank[J]. Ecotoxicology, 2011, 20(3):574-579
    Coutellec M A, Barata C. An introduction to evolutionary processes in ecotoxicology[J]. Ecotoxicology, 2011, 20(3):493-496
    Coutellec M A, Barata C. Special issue on long-term ecotoxicological effects:An introduction[J]. Ecotoxicology, 2013, 22(5):763-766
    Bougas B, Normandeau E, Grasset J, et al. Transcriptional response of yellow perch to changes in ambient metal concentrations:A reciprocal field transplantation experiment[J]. Aquatic Toxicology, 2016, 173:132-142
    García-Balboa C, Baselga-Cervera B, García-Sanchez A, et al. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining:An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments[J]. Aquatic Toxicology, 2013, 144-145:116-123
    Reid N M, Proestou D A, Clark B W, et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish[J]. Science, 2016, 354(6317):1305-1308
    Bickham J W, Smolen M J. Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology[J]. Infectious Diseases of Poverty, 1994, 102(Suppl.12):25-28
    Harrison C M. Inheritance of resistance to DDT in the housefly, Musca domestica L.[J]. Nature, 1951, 167(4256):855-856
    Kettlewell H B D. Selection experiments on industrial melanism in the Lepidoptera[J]. Heredity, 1955, 9(3):323-342
    Klerks P L, Weis J S. Genetic adaptation to heavy metals in aquatic organisms:A review[J]. Environmental Pollution, 1987, 45(3):173-205
    Nacci D E, Champlin D, Jayaraman S. Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs)[J]. Estuaries and Coasts, 2010, 33(4):853-864
    Oziolor E M, Matson C W. Evolutionary Toxicology:Population Adaptation in Response to Anthropogenic Pollution[M]//Riesch R, Tobler M, Plath M. Extremophile FIshes. Heidelberg:Springer, Cham., 2015:247-277
    Wirgin I, Roy N K, Loftus M, et al. Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River[J]. Science, 2011, 331(6022):1322-1325
    Meyer J N. Cytochrome P4501A (CYP1A) in killifish ( Fundulus heteroclitus ):Heritability of altered expression and relationship to survival in contaminated sediments[J]. Toxicological Sciences, 2002, 68(1):69-81
    Noyes P D, McElwee M K, Miller H D, et al. The toxicology of climate change:Environmental contaminants in a warming world[J]. Environment International, 2009, 35(6):971-986
    Sarret G, Manceau A, Cuny D, et al. Mechanisms of lichen resistance to metallic pollution[J]. Environmental Science&Technology, 1998, 32(21):3325-3330
    Bickham J W, Sandhu S, Hebert P D N, et al. Effects of chemical contaminants on genetic diversity in natural populations:Implications for biomonitoring and ecotoxicology[J]. Mutation Research/Reviews in Mutation Research, 2000, 463(1):33-51
    Blaustein A R, Belden L K. Amphibian defenses against ultraviolet-B radiation[J]. Evolution&Development, 2003, 5(1):89-97
    Marquis O, Miaud C, Ficetola G F, et al. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients[J]. Aquatic Toxicology, 2009, 95(2):152-161
    Poynton H C, Hasenbein S, Benoit J B, et al. The toxicogenome of Hyalella azteca :A model for sediment ecotoxicology and evolutionary toxicology[J]. Environmental Science&Technology, 2018, 52(10):6009-6022
    Major K M, Weston D P, Lydy M J, et al. Unintentional exposure to terrestrial pesticides drives widespread and predictable evolution of resistance in freshwater crustaceans[J]. Evolutionary Applications, 2018, 11(5):748-761
    Weston D P, Poynton H C, Wellborn G A, et al. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41):16532-16537
    Wen Z M, Rupasinghe S, Niu G D, et al. CYP6B1 and CYP6B3 of the black swallowtail ( Papilio polyxenes ):Adaptive evolution through subfunctionalization[J]. Molecular Biology and Evolution, 2006, 23(12):2434-2443
    Coyle P, Philcox J C, Carey L C, et al. Metallothionein:The multipurpose protein[J]. Cellular and Molecular Life Sciences, 2002, 59(4):627-647
    Maroni G, Wise J, Young J E, et al. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster [J]. Genetics, 1987, 117(4):739-744
    Maron L G, Guimarães C T, Kirst M, et al. Aluminum tolerance in maize is associated with higher MATE1 gene copy number[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13):5241-5246
    Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required Cis -regulatory changes and triplication of HMA4[J]. Nature, 2008, 453(7193):391-395
    Roux M, Schwessinger B, Albrecht C, et al. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. The Plant Cell, 2011, 23(6):2440-2455
    Medina M H, Correa J A, Barata C. Micro-evolution due to pollution:Possible consequences for ecosystem responses to toxic stress[J]. Chemosphere, 2007, 67(11):2105-2114
    van Straalen N M, Timmermans M J T N. Genetic variation in toxicant-stressed populations:An evaluation of the"genetic erosion "hypothesis[J]. Human and Ecological Risk Assessment:An International Journal, 2002, 8(5):983-1002
    Laporte M, Pavey S A, Rougeux C, et al. RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels[J]. Molecular Ecology, 2016, 25(1):219-237
    Baker R J, Dickins B, Wickliffe J K, et al. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent[J]. Evolutionary Applications, 2017, 10(8):784-791
    Jernfors T, Kesäniemi J, Lavrinienko A, et al. Transcriptional upregulation of DNA damage response genes in bank voles ( Myodes glareolus ) inhabiting the Chernobyl exclusion zone[J]. Frontiers in Environmental Science, 2018, 5:95
    Rolshausen G, Phillip D A, Beckles D M, et al. Do stressful conditions make adaptation difficult?Guppies in the oil-polluted environments of southern Trinidad[J]. Evolutionary Applications, 2015, 8(9):854-870
    Piñeira J, Quesada H, Rolán-Alvarez E, et al. Genetic impact of the Prestige oil spill in wild populations of a poor dispersal marine snail from intertidal rocky shores[J]. Marine Pollution Bulletin, 2008, 56(2):270-281
    Leung M C K, Procter A C, Goldstone J V, et al. Applying evolutionary genetics to developmental toxicology and risk assessment[J]. Reproductive Toxicology, 2017, 69:174-186
    Hahn M E. Aryl hydrocarbon receptors:Diversity and evolution[J]. Chemico-Biological Interactions, 2002, 141(1-2):131-160
    Hahn M E, Karchner S I, Merson R R. Diversity as opportunity:Insights from 600 million years of AHR evolution[J]. Current Opinion in Toxicology, 2017, 2:58-71
    Guénard G, von der Ohe P C, de Zwart D, et al. Using phylogenetic information to predict species tolerances to toxic chemicals[J]. Ecological Applications, 2011, 21(8):3178-3190
    Carew M E, Miller A D, Hoffmann A A. Phylogenetic signals and ecotoxicological responses:Potential implications for aquatic biomonitoring[J]. Ecotoxicology, 2011, 20(3):595-606
    Pelletier F, Garant D, Hendry A P. Eco-evolutionary dynamics[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1523):1483-1489
    Whitehead A. Evolutionary genomics of environmental pollution[J]. Advances in Experimental Medicine and Biology, 2014, 781:321-337
    Lee C E, Remfert J L, Opgenorth T, et al. Evolutionary responses to crude oil from the Deepwater Horizon oil spill by the copepod Eurytemora affinis [J]. Evolutionary Applications, 2017, 10(8):813-828
    Osterberg J S, Cammen K M, Schultz T F, et al. Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish ( Fundulus heteroclitus )[J]. Aquatic Toxicology, 2018, 200:73-82
    Lindberg C D, Jayasundara N, Kozal J S, et al. Resistance to polycyclic aromatic hydrocarbon toxicity and associated bioenergetic consequences in a population of Fundulus heteroclitus [J]. Ecotoxicology, 2017, 26(3):435-448
    di Giulio R T, Clark B W. The Elizabeth River story:A case study in evolutionary toxicology[J]. Journal of Toxicology and Environmental Health, Part B, 2015, 18(6):259-298
    Oziolor E M, DeSchamphelaere K, Lyon D, et al. Evolutionary toxicology:An informational tool for chemical regulation?[J]. Environmental Toxicology and Chemistry, 2020, 39(2):257-268
    van Straalen N M, Feder M E. Ecological and evolutionary functional genomics:How can it contribute to the risk assessment of chemicals?[J]. Environmental Science&Technology, 2012, 46(1):3-9
    Zhang Q, Wang Z H, Zhang W F, et al. The memory of neuronal mitochondrial stress is inherited transgenerationally via elevated mitochondrial DNA levels[J]. Nature Cell Biology, 2021, 23(8):870-880
    Zhang Q, Wu X Y, Chen P, et al. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling[J]. Cell, 2018, 174(4):870-883.e17
    Agra A R, Soares A M V M, Barata C. Life-history consequences of adaptation to pollution." Daphnia longispina clones historically exposed to copper"[J]. Ecotoxicology, 2011, 20(3):552-562
    Fisker K V, Sørensen J G, Damgaard C, et al. Genetic adaptation of earthworms to copper pollution:Is adaptation associated with fitness costs in Dendrobaena octaedra ?[J]. Ecotoxicology, 2011, 20(3):563-573
    Jansen M, Coors A, Stoks R, et al. Evolutionary ecotoxicology of pesticide resistance:A case study in Daphnia [J]. Ecotoxicology, 2011, 20(3):543-551
    Dutilleul M, Réale D, Goussen B, et al. Adaptation costs to constant and alternating polluted environments[J]. Evolutionary Applications, 2017, 10(8):839-851
    Bélanger-Deschênes S, Couture P, Campbell P G, et al. Evolutionary change driven by metal exposure as revealed by coding SNP genome scan in wild yellow perch ( Perca flavescens )[J]. Ecotoxicology, 2013, 22(5):938-957
    Whitehead A, Clark B W, Reid N M, et al. When evolution is the solution to pollution:Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus ) populations[J]. Evolutionary Applications, 2017, 10(8):762-783
    Zhou S F, Gao Y H, Jiang W Q, et al. Interactions of herbs with cytochrome P450[J]. Drug Metabolism Reviews, 2003, 35(1):35-98
    Posthuma L, van Straalen N M. Heavy-metal adaptation in terrestrial invertebrates:A review of occurrence, genetics, physiology and ecological consequences[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology, 1993, 106(1):11-38
    Bohmann K, Evans A, Gilbert M T, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends in Ecology&Evolution, 2014, 29(6):358-367
    Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4):423-425
    Thomsen P F, Willerslev E. Environmental DNA:An emerging tool in conservation for monitoring past and present biodiversity[J]. Biological Conservation, 2015, 183:4-18
    Cothran R D, Brown J M, Relyea R A. Proximity to agriculture is correlated with pesticide tolerance:Evidence for the evolution of amphibian resistance to modern pesticides[J]. Evolutionary Applications, 2013, 6(5):832-841
    Fardisi M, Gondhalekar A D, Ashbrook A R, et al. Rapid evolutionary responses to insecticide resistance management interventions by the German cockroach ( Blattella germanica L.)[J]. Scientific Reports, 2019, 9(1):8292
    Hua J, Jones D K, Mattes B M, et al. The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations[J]. Evolutionary Applications, 2015, 8(6):586-596
    Hua J, Wuerthner V P, Jones D K, et al. Evolved pesticide tolerance influences susceptibility to parasites in amphibians[J]. Evolutionary Applications, 2017, 10(8):802-812
    Råberg L. How to live with the enemy:Understanding tolerance to parasites[J]. PLoS Biology, 2014, 12(11):e1001989
    阎凯,李博,韩全保,等.进化生态毒理学研究进展[M]//段昌群.生态科学进展(第五卷).北京:高等教育出版社, 2010:125-138Yan K, Li B, Han Q B, et al. Advances in Evolutionary Ecotoxicology[M]//Duan C. Advances in Ecological Sciences (Vol. 5). Beijing:Higher Education Press, 2010

    :125-138(in Chinese)

  • 加载中
计量
  • 文章访问数:  2695
  • HTML全文浏览数:  2695
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-29

进化毒理学:生态毒理学研究的新视角

    通讯作者: 穆景利, E-mail: jlmu@mju.edu.cn
    作者简介: 张智(1992-),男,博士,研究方向为分子与进化生态学,E-mail:zhizhang@mju.edu.cn
  • 1. 闽江学院海洋研究院, 福州 350108;
  • 2. 国家海洋环境监测中心, 大连 116023;
  • 3. 厦门大学近海海洋环境科学国家重点实验室, 厦门 361102
基金项目:

国家自然科学基金资助项目(41776118)

福建省海洋经济专项(ZHHY-2019-1)

福建省教育厅中青年教师教育科研项目(JAT200445)

摘要: 环境污染是驱动生物适应性进化的重要因素之一。近年来,随着分子生物学的迅猛发展和进化生物学理论的逐步更新,进化毒理学(evolutionary toxicology)这一交叉学科快速发展。进化毒理学研究是运用分子生物学和种群遗传学的方法,以进化生物学和保护遗传学的理论和概念为基础,试图描述生物体适应环境的机制、原则以及环境污染对生物体适应过程的影响与作用。本文回顾了进化毒理学的理论发展,归纳总结了进化毒理学的研究范畴和主要研究内容,并对进化毒理学在未来生态风险评估中的应用、进化毒理学的研究方向以及相关理论进行了展望。本文旨在对进化毒理学这一新兴交叉学科进行梳理和简介,为丰富生态毒理学研究提供理论支持,同时也为解决日益加剧的环境污染问题提供新的研究思路与途径。

English Abstract

参考文献 (74)

目录

/

返回文章
返回