植物对镉吸收、转运及耐性调控机制研究进展

李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
引用本文: 李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
Li Huijun, Ming Lili, Zhang Wensheng. Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
Citation: Li Huijun, Ming Lili, Zhang Wensheng. Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001

植物对镉吸收、转运及耐性调控机制研究进展

    作者简介: 李慧君(1993—),女,博士研究生,研究方向为土壤重金属污染对药用植物的影响,E-mail:lihj@mail.bnu.edu.cn
    通讯作者: 张文生, E-mail: zws@bnu.edu.cn
  • 基金项目:

    国家重点研发计划(2019YFC1803400);广东省普通高校重点领域专项(2021ZDZX2053)

  • 中图分类号: X171.5

Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review

    Corresponding author: Zhang Wensheng, zws@bnu.edu.cn
  • Fund Project:
  • 摘要: 随着工农业的发展,我国土壤镉污染现象普遍。土壤中的镉移动性强、毒性高,易被植物吸收,产生毒害效应。为全面了解镉在植物体内的吸收、转运过程及植物镉耐性的分子调控机制,本文系统综述了植物体内镉吸收、转运的吸收蛋白和排出蛋白的种类、分布及功能,并对植物镉耐性基因表达的转录因子调控和microRNA调控研究进行了总结与展望,以期为植物对镉的吸收、转运及耐性调控机制研究提供参考。
  • 加载中
  • 和君强, 刘代欢, 邓林, 等. 农田土壤镉生物有效性及暴露评估研究进展[J]. 生态毒理学报, 2017, 12(6): 69-82

    He J Q, Liu D H, Deng L, et al. Bioavailability and exposure assessment of cadmium in farmland soil: A review [J]. Asian Journal of Ecotoxicology, 2017, 12(6): 69-82 (in Chinese)

    陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692

    Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the National General Survey of Soil Contamination [J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692 (in Chinese)

    徐佳慧, 王萌, 张润, 等. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91

    Xu J H, Wang M, Zhang R, et al. Toxicity of cadmium pollution in soil to organisms: A review [J]. Asian Journal of Ecotoxicology, 2020, 15(5): 82-91 (in Chinese)

    杨晓远, 王海娟, 王宏镔. 龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展[J]. 生态毒理学报, 2020, 15(6): 72-81

    Yang X Y, Wang H J, Wang H B. Advances in physiological and molecular mechanisms of cadmium hyperaccumulation by Solanum nigrum L [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 72-81 (in Chinese)

    Leng Y, Li Y, Wen Y, et al. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments [J]. Ecotoxicology and Environmental Safety, 2020, 204: 111098
    Qin S Y, Liu H E, Nie Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review [J]. Pedosphere, 2020, 30(2): 168-180
    Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5624-5628
    杨茹月, 李彤彤, 杨天华, 等. 植物基因工程修复土壤重金属污染研究进展[J]. 环境科学研究, 2019, 32(8): 1294-1303

    Yang R Y, Li T T, Yang T H, et al. Advances in enhanced phytoremediation by genetic engineering technology for heavy metal pollution in soil [J]. Research of Environmental Sciences, 2019, 32(8): 1294-1303 (in Chinese)

    Zheng X, Chen L, Li X F. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress [J]. Botanical Studies, 2018, 59(1): 22
    Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice [J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469
    Yang Q Y, Ma X X, Luo S, et al. SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance [J]. Environmental and Experimental Botany, 2018, 155: 107-117
    Tan L T, Qu M M, Zhu Y X, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake [J]. Plant Physiology, 2020, 183(3): 1235-1249
    韩佳慧, 万思涛, 俞娇, 等. 参与植物体内镉元素转运的植物锌铁转运蛋白ZIP研究进展[J]. 植物生理学报, 2019, 55(10): 1449-1457

    Han J H, Wan S T, Yu J, et al. Progress on zinc and iron transporter (ZIP) involved in Cd transport in plants [J]. Plant Physiology Journal, 2019, 55(10): 1449-1457 (in Chinese)

    Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. raf.) [J]. Frontiers in Plant Science, 2017, 8: 588
    Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron [J]. The EMBO Journal, 2005, 24(23): 4041-4051
    Lanquar V, Ramos M S, Lelièvre F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency [J]. Plant Physiology, 2010, 152(4): 1986-1999
    Pottier M, Oomen R, Picco C, et al. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium [J]. The Plant Journal, 2015, 83(4): 625-637
    Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice [J]. The Plant Cell, 2012, 24(5): 2155-2167
    Chang J D, Huang S, Yamaji N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice [J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491
    Huang W X, Zhang D M, Cao Y Q, et al. Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111412
    Tang L, Mao B G, Li Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield [J]. Scientific Reports, 2017, 7: 14438
    Chang J D, Huang S, Konishi N, et al. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain [J]. Journal of Experimental Botany, 2020, 71(18): 5705-5715
    Zhang J, Zhang M, Song H Y, et al. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance [J]. Environmental and Experimental Botany, 2020, 176: 104121
    李亚敏, 巩宗强, 贾春云, 等. 玉米镉转运基因ZmNramp1的鉴定及对镉胁迫的响应[J]. 生态学杂志, 2021, 40(7): 2016-2023

    Li Y M, Gong Z Q, Jia C Y, et al. Identification of the cadmium transport gene ZmNramp1 in maize and its response to cadmium stress [J]. Chinese Journal of Ecology, 2021, 40(7): 2016-2023 (in Chinese)

    Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(Ⅲ) uptake [J]. Nature, 2001, 409(6818): 346-349
    Feng S S, Tan J J, Zhang Y X, et al. Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum [J]. Plant Cell Reports, 2017, 36(2): 281-296
    Wang J W, Li Y, Zhang Y X, et al. Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco [J]. Plant Cell Reports, 2013, 32(5): 651-662
    Chen H M, Zhang C, Guo H P, et al. Overexpression of a Miscanthus sacchariflorus yellow stripe-like transporter MsYSL1 enhances resistance of Arabidopsis to cadmium by mediating metal ion reallocation [J]. Plant Growth Regulation, 2018, 85(1): 101-111
    Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana [J]. New Phytologist, 2009, 181(1): 71-78
    Liedschulte V, Laparra H, Battey J N D, et al. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco [J]. Plant, Cell & Environment, 2017, 40(3): 364-377
    Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice [J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957
    Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16500-16505
    Shao J F, Xia J X, Yamaji N, et al. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter [J]. Journal of Experimental Botany, 2018, 69(10): 2743-2752
    吴海涛, 袁博, 刘佳兰, 等. 异源表达伴矿景天SpHMA2基因提高拟南芥对重金属镉的耐性及地上部分积累[J]. 应用与环境生物学报, 2022, 28(3): 1-10

    Wu H T, Yuan B, Liu J L, et al. Ectopic expression of SpHMA2 of Sedum plumbizincicola enhanced cadmium tolerance and shoot accumulation in Arabidopsis thaliana [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(3): 1-10 (in Chinese)

    Li Z R, Mei X Y, Li T, et al. Effects of calcium application on activities of membrane transporters in Panax notoginseng under cadmium stress [J]. Chemosphere, 2021, 262: 127905
    Wu Q Y, Shigaki T, Williams K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation [J]. Journal of Plant Physiology, 2011, 168(2): 167-173
    Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants [J]. Plant Biology, 2006, 8(4): 419-429
    Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. [J]. Planta, 2007, 226(6): 1379-1387
    Korenkov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers [J]. Planta, 2007, 225(2): 403-411
    Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4 [J]. New Phytologist, 2009, 183(1): 95-105
    廖琼, 周婷, 肖燕, 等. 甘蓝型油菜钙离子转运蛋白CAX家族基因生物信息学及其对镉胁迫响应表达分析[J]. 植物生理学报, 2019, 55(5): 596-608

    Liao Q, Zhou T, Xiao Y, et al. Identification and bioinformatics analysis of CAX family genes and their expression response to Cd2+ stress in Brassica napus [J]. Plant Physiology Journal, 2019, 55(5): 596-608 (in Chinese)

    陈少鹏, 庄倩倩, 段肖琪, 等. 越橘VcCAX2基因的克隆与生物信息学及其在Cd胁迫下的表达分析[J]. 分子植物育种, 2021, 19(1): 111-117

    Chen S P, Zhuang Q Q, Duan X Q, et al. VcCAX2 gene cloning, bioinformatics and its expression analysis under Cd stress [J]. Molecular Plant Breeding, 2021, 19(1): 111-117 (in Chinese)

    Brunetti P, Zanella L, de Paolis A, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis [J]. Journal of Experimental Botany, 2015, 66(13): 3815-3829
    Kim D Y, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance [J]. The Plant Journal, 2007, 50(2): 207-218
    Ismael M A, Elyamine A M, Moussa M G, et al. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers [J]. Metallomics, 2018, 11(2): 255-277
    Shahzad R, Jamil S, Ahmad S, et al. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives [J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2323-2341
    Xin P F, Gao C S, Cheng C H, et al. Identification and characterization of hemp WRKY transcription factors in response to abiotic stresses [J]. Biologia Plantarum, 2016, 60(3): 489-495
    Liu Z Q, Fang H H, Pei Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana [J]. Science Bulletin, 2015, 60(11): 995-1001
    Han Y Y, Fan T T, Zhu X Y, et al. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis [J]. Plant Molecular Biology, 2019, 99(1-2): 149-159
    Sheng Y B, Yan X X, Huang Y, et al. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis [J]. Plant, Cell & Environment, 2019, 42(3): 891-903
    Hong C Y, Cheng D, Zhang G Q, et al. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress [J]. Biochemical and Biophysical Research Communications, 2017, 482(4): 1504-1510
    王影, 邱文敏, 李鹤, 等. 东南景天SaWRKY7基因对镉胁迫的响应研究[J]. 南京林业大学学报: 自然科学版, 2019, 43(3): 59-66

    Wang Y, Qiu W M, Li H, et al. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance [J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2019, 43(3): 59-66 (in Chinese)

    丁杰, 张晓娜, 朴春兰, 等. 大豆根系中应答镉胁迫的R2R3-MYB基因分析[J]. 生态学杂志, 2018, 37(7): 2030-2039

    Ding J, Zhang X N, Piao C L, et al. Analysis of the R2R3-MYB genes in soybean roots in response to Cd stress [J]. Chinese Journal of Ecology, 2018, 37(7): 2030-2039 (in Chinese)

    Agarwal P, Mitra M, Banerjee S, et al. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis [J]. Plant Science, 2020, 297: 110501
    Zhang P, Wang R L, Ju Q, et al. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation [J]. Plant Physiology, 2019, 180(1): 529-542
    Hu S B, Yu Y, Chen Q H, et al. OsMYB45 plays an important role in rice resistance to cadmium stress [J]. Plant Science, 2017, 264: 1-8
    Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants [J]. Molecular Biology and Evolution, 2009, 27(4): 862-874
    Sajeevan R S, Nataraja K N. Molecular cloning and characterization of a novel basic helix-loop-helix-144 (bHLH144)-like transcription factor from Morus alba (L.) [J]. Plant Gene, 2016, 5: 109-117
    Wu H L, Chen C L, Du J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots [J]. Plant Physiology, 2011, 158(2): 790-800
    Yao X N, Cai Y R, Yu D Q, et al. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana [J]. Journal of Integrative Plant Biology, 2018, 60(8): 691-702
    Xu Z L, Liu X Q, He X L, et al. The soybean basic helix-loop-helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots [J]. Frontiers in Plant Science, 2017, 8: 1098
    刘晓庆, 陈华涛, 张红梅, 等. 大豆GmbHLH041基因的生物信息学分析及对镉胁迫的响应[J]. 华北农学报, 2018, 33(3): 14-18

    Liu X Q, Chen H T, Zhang H M, et al. Bioinformatics analysis of GmbHLH041 of soybean and its response to cadmium stress [J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 14-18 (in Chinese)

    Das B, Sen A, Roy S, et al. miRNAs: Tiny super-soldiers shaping the life of rice plants for facing “stress”-ful times [J]. Plant Gene, 2021, 26: 100281
    Ding Y F, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa) [J]. Journal of Experimental Botany, 2011, 62(10): 3563-3573
    Tang M F, Mao D H, Xu L W, et al. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings [J]. BMC Genomics, 2014, 15(1): 835
    Jian H J, Yang B, Zhang A X, et al. Genome-wide identification of microRNAs in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing [J]. International Journal of Molecular Sciences, 2018, 19(5): 1431
    Ding Y F, Gong S H, Wang Y, et al. microRNA166 modulates cadmium tolerance and accumulation in rice [J]. Plant Physiology, 2018, 177(4): 1691-1703
    Ding Y F, Ye Y Y, Jiang Z H, et al. microRNA390 is involved in cadmium tolerance and accumulation in rice [J]. Frontiers in Plant Science, 2016, 7: 235
    Qiu Z B, Hai B Z, Guo J L, et al. Characterization of wheat miRNAs and their target genes responsive to cadmium stress [J]. Plant Physiology and Biochemistry, 2016, 101: 60-67
    Pagano L, Rossi R, Paesano L, et al. miRNA regulation and stress adaptation in plants [J]. Environmental and Experimental Botany, 2021, 184: 104369
    Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth [J]. Environmental Science and Pollution Research International, 2017, 24(11): 10068-10082
  • 加载中
计量
  • 文章访问数:  5669
  • HTML全文浏览数:  5669
  • PDF下载数:  227
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-03
李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
引用本文: 李慧君, 明荔莉, 张文生. 植物对镉吸收、转运及耐性调控机制研究进展[J]. 生态毒理学报, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
Li Huijun, Ming Lili, Zhang Wensheng. Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001
Citation: Li Huijun, Ming Lili, Zhang Wensheng. Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review[J]. Asian journal of ecotoxicology, 2022, 17(2): 86-95. doi: 10.7524/AJE.1673-5897.20210603001

植物对镉吸收、转运及耐性调控机制研究进展

    通讯作者: 张文生, E-mail: zws@bnu.edu.cn
    作者简介: 李慧君(1993—),女,博士研究生,研究方向为土壤重金属污染对药用植物的影响,E-mail:lihj@mail.bnu.edu.cn
  • 1. 北京师范大学天然药物教育部工程研究中心,北京 100088;
  • 2. 拱北海关技术中心,珠海 519000;
  • 3. 地表过程与资源生态国家重点实验室珠海基地,珠海 519087;
  • 4. 北京师范大学中药资源保护与利用北京市重点实验室,北京 100875
基金项目:

国家重点研发计划(2019YFC1803400);广东省普通高校重点领域专项(2021ZDZX2053)

摘要: 随着工农业的发展,我国土壤镉污染现象普遍。土壤中的镉移动性强、毒性高,易被植物吸收,产生毒害效应。为全面了解镉在植物体内的吸收、转运过程及植物镉耐性的分子调控机制,本文系统综述了植物体内镉吸收、转运的吸收蛋白和排出蛋白的种类、分布及功能,并对植物镉耐性基因表达的转录因子调控和microRNA调控研究进行了总结与展望,以期为植物对镉的吸收、转运及耐性调控机制研究提供参考。

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回