植物对镉吸收、转运及耐性调控机制研究进展
Uptake, Translocation and Tolerance Mechanism of Cadmium in Plants: A Review
-
摘要: 随着工农业的发展,我国土壤镉污染现象普遍。土壤中的镉移动性强、毒性高,易被植物吸收,产生毒害效应。为全面了解镉在植物体内的吸收、转运过程及植物镉耐性的分子调控机制,本文系统综述了植物体内镉吸收、转运的吸收蛋白和排出蛋白的种类、分布及功能,并对植物镉耐性基因表达的转录因子调控和microRNA调控研究进行了总结与展望,以期为植物对镉的吸收、转运及耐性调控机制研究提供参考。Abstract: In the development of industry and agriculture in China, cadmium pollution in soil is widespread. Cadmium in soil is highly mobile and toxic, which can be easily absorbed by plants and produce toxic effects to human. In order to fully understand the process of cadmium uptake, transportation and accumulation in plants, the types of absorption proteins and excretion proteins involved in cadmium uptake and transport in plants were systematically reviewed in this paper. Furthermore, the research on the transcription factors and microRNA regulation of cadmium tolerance genes expression in plants was summarized to better understand the molecular mechanism of cadmium tolerance regulation in plants. Finally, the future research direction was discussed in order to provide some reference for the research on the regulation mechanism of cadmium uptake, transport and tolerance in plants.
-
Key words:
- cadmium /
- plants /
- uptake /
- translocation /
- tolerance
-
-
和君强, 刘代欢, 邓林, 等. 农田土壤镉生物有效性及暴露评估研究进展[J]. 生态毒理学报, 2017, 12(6): 69-82 He J Q, Liu D H, Deng L, et al. Bioavailability and exposure assessment of cadmium in farmland soil: A review [J]. Asian Journal of Ecotoxicology, 2017, 12(6): 69-82 (in Chinese)
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692 Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the National General Survey of Soil Contamination [J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692 (in Chinese)
徐佳慧, 王萌, 张润, 等. 土壤镉污染的生物毒性研究进展[J]. 生态毒理学报, 2020, 15(5): 82-91 Xu J H, Wang M, Zhang R, et al. Toxicity of cadmium pollution in soil to organisms: A review [J]. Asian Journal of Ecotoxicology, 2020, 15(5): 82-91 (in Chinese)
杨晓远, 王海娟, 王宏镔. 龙葵(Solanum nigrum L.)超富集镉的生理和分子机制研究进展[J]. 生态毒理学报, 2020, 15(6): 72-81 Yang X Y, Wang H J, Wang H B. Advances in physiological and molecular mechanisms of cadmium hyperaccumulation by Solanum nigrum L [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 72-81 (in Chinese)
Leng Y, Li Y, Wen Y, et al. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments [J]. Ecotoxicology and Environmental Safety, 2020, 204: 111098 Qin S Y, Liu H E, Nie Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review [J]. Pedosphere, 2020, 30(2): 168-180 Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5624-5628 杨茹月, 李彤彤, 杨天华, 等. 植物基因工程修复土壤重金属污染研究进展[J]. 环境科学研究, 2019, 32(8): 1294-1303 Yang R Y, Li T T, Yang T H, et al. Advances in enhanced phytoremediation by genetic engineering technology for heavy metal pollution in soil [J]. Research of Environmental Sciences, 2019, 32(8): 1294-1303 (in Chinese)
Zheng X, Chen L, Li X F. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress [J]. Botanical Studies, 2018, 59(1): 22 Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice [J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469 Yang Q Y, Ma X X, Luo S, et al. SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance [J]. Environmental and Experimental Botany, 2018, 155: 107-117 Tan L T, Qu M M, Zhu Y X, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake [J]. Plant Physiology, 2020, 183(3): 1235-1249 韩佳慧, 万思涛, 俞娇, 等. 参与植物体内镉元素转运的植物锌铁转运蛋白ZIP研究进展[J]. 植物生理学报, 2019, 55(10): 1449-1457 Han J H, Wan S T, Yu J, et al. Progress on zinc and iron transporter (ZIP) involved in Cd transport in plants [J]. Plant Physiology Journal, 2019, 55(10): 1449-1457 (in Chinese)
Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. raf.) [J]. Frontiers in Plant Science, 2017, 8: 588 Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron [J]. The EMBO Journal, 2005, 24(23): 4041-4051 Lanquar V, Ramos M S, Lelièvre F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency [J]. Plant Physiology, 2010, 152(4): 1986-1999 Pottier M, Oomen R, Picco C, et al. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium [J]. The Plant Journal, 2015, 83(4): 625-637 Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice [J]. The Plant Cell, 2012, 24(5): 2155-2167 Chang J D, Huang S, Yamaji N, et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice [J]. Plant, Cell & Environment, 2020, 43(10): 2476-2491 Huang W X, Zhang D M, Cao Y Q, et al. Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111412 Tang L, Mao B G, Li Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield [J]. Scientific Reports, 2017, 7: 14438 Chang J D, Huang S, Konishi N, et al. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain [J]. Journal of Experimental Botany, 2020, 71(18): 5705-5715 Zhang J, Zhang M, Song H Y, et al. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance [J]. Environmental and Experimental Botany, 2020, 176: 104121 李亚敏, 巩宗强, 贾春云, 等. 玉米镉转运基因ZmNramp1的鉴定及对镉胁迫的响应[J]. 生态学杂志, 2021, 40(7): 2016-2023 Li Y M, Gong Z Q, Jia C Y, et al. Identification of the cadmium transport gene ZmNramp1 in maize and its response to cadmium stress [J]. Chinese Journal of Ecology, 2021, 40(7): 2016-2023 (in Chinese)
Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(Ⅲ) uptake [J]. Nature, 2001, 409(6818): 346-349 Feng S S, Tan J J, Zhang Y X, et al. Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum [J]. Plant Cell Reports, 2017, 36(2): 281-296 Wang J W, Li Y, Zhang Y X, et al. Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco [J]. Plant Cell Reports, 2013, 32(5): 651-662 Chen H M, Zhang C, Guo H P, et al. Overexpression of a Miscanthus sacchariflorus yellow stripe-like transporter MsYSL1 enhances resistance of Arabidopsis to cadmium by mediating metal ion reallocation [J]. Plant Growth Regulation, 2018, 85(1): 101-111 Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana [J]. New Phytologist, 2009, 181(1): 71-78 Liedschulte V, Laparra H, Battey J N D, et al. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco [J]. Plant, Cell & Environment, 2017, 40(3): 364-377 Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice [J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957 Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16500-16505 Shao J F, Xia J X, Yamaji N, et al. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter [J]. Journal of Experimental Botany, 2018, 69(10): 2743-2752 吴海涛, 袁博, 刘佳兰, 等. 异源表达伴矿景天SpHMA2基因提高拟南芥对重金属镉的耐性及地上部分积累[J]. 应用与环境生物学报, 2022, 28(3): 1-10 Wu H T, Yuan B, Liu J L, et al. Ectopic expression of SpHMA2 of Sedum plumbizincicola enhanced cadmium tolerance and shoot accumulation in Arabidopsis thaliana [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(3): 1-10 (in Chinese)
Li Z R, Mei X Y, Li T, et al. Effects of calcium application on activities of membrane transporters in Panax notoginseng under cadmium stress [J]. Chemosphere, 2021, 262: 127905 Wu Q Y, Shigaki T, Williams K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation [J]. Journal of Plant Physiology, 2011, 168(2): 167-173 Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants [J]. Plant Biology, 2006, 8(4): 419-429 Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. [J]. Planta, 2007, 226(6): 1379-1387 Korenkov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers [J]. Planta, 2007, 225(2): 403-411 Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4 [J]. New Phytologist, 2009, 183(1): 95-105 廖琼, 周婷, 肖燕, 等. 甘蓝型油菜钙离子转运蛋白CAX家族基因生物信息学及其对镉胁迫响应表达分析[J]. 植物生理学报, 2019, 55(5): 596-608 Liao Q, Zhou T, Xiao Y, et al. Identification and bioinformatics analysis of CAX family genes and their expression response to Cd2+ stress in Brassica napus [J]. Plant Physiology Journal, 2019, 55(5): 596-608 (in Chinese)
陈少鹏, 庄倩倩, 段肖琪, 等. 越橘VcCAX2基因的克隆与生物信息学及其在Cd胁迫下的表达分析[J]. 分子植物育种, 2021, 19(1): 111-117 Chen S P, Zhuang Q Q, Duan X Q, et al. VcCAX2 gene cloning, bioinformatics and its expression analysis under Cd stress [J]. Molecular Plant Breeding, 2021, 19(1): 111-117 (in Chinese)
Brunetti P, Zanella L, de Paolis A, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis [J]. Journal of Experimental Botany, 2015, 66(13): 3815-3829 Kim D Y, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance [J]. The Plant Journal, 2007, 50(2): 207-218 Ismael M A, Elyamine A M, Moussa M G, et al. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers [J]. Metallomics, 2018, 11(2): 255-277 Shahzad R, Jamil S, Ahmad S, et al. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives [J]. Saudi Journal of Biological Sciences, 2021, 28(4): 2323-2341 Xin P F, Gao C S, Cheng C H, et al. Identification and characterization of hemp WRKY transcription factors in response to abiotic stresses [J]. Biologia Plantarum, 2016, 60(3): 489-495 Liu Z Q, Fang H H, Pei Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana [J]. Science Bulletin, 2015, 60(11): 995-1001 Han Y Y, Fan T T, Zhu X Y, et al. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis [J]. Plant Molecular Biology, 2019, 99(1-2): 149-159 Sheng Y B, Yan X X, Huang Y, et al. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis [J]. Plant, Cell & Environment, 2019, 42(3): 891-903 Hong C Y, Cheng D, Zhang G Q, et al. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress [J]. Biochemical and Biophysical Research Communications, 2017, 482(4): 1504-1510 王影, 邱文敏, 李鹤, 等. 东南景天SaWRKY7基因对镉胁迫的响应研究[J]. 南京林业大学学报: 自然科学版, 2019, 43(3): 59-66 Wang Y, Qiu W M, Li H, et al. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance [J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2019, 43(3): 59-66 (in Chinese)
丁杰, 张晓娜, 朴春兰, 等. 大豆根系中应答镉胁迫的R2R3-MYB基因分析[J]. 生态学杂志, 2018, 37(7): 2030-2039 Ding J, Zhang X N, Piao C L, et al. Analysis of the R2R3-MYB genes in soybean roots in response to Cd stress [J]. Chinese Journal of Ecology, 2018, 37(7): 2030-2039 (in Chinese)
Agarwal P, Mitra M, Banerjee S, et al. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis [J]. Plant Science, 2020, 297: 110501 Zhang P, Wang R L, Ju Q, et al. The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation [J]. Plant Physiology, 2019, 180(1): 529-542 Hu S B, Yu Y, Chen Q H, et al. OsMYB45 plays an important role in rice resistance to cadmium stress [J]. Plant Science, 2017, 264: 1-8 Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants [J]. Molecular Biology and Evolution, 2009, 27(4): 862-874 Sajeevan R S, Nataraja K N. Molecular cloning and characterization of a novel basic helix-loop-helix-144 (bHLH144)-like transcription factor from Morus alba (L.) [J]. Plant Gene, 2016, 5: 109-117 Wu H L, Chen C L, Du J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots [J]. Plant Physiology, 2011, 158(2): 790-800 Yao X N, Cai Y R, Yu D Q, et al. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana [J]. Journal of Integrative Plant Biology, 2018, 60(8): 691-702 Xu Z L, Liu X Q, He X L, et al. The soybean basic helix-loop-helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots [J]. Frontiers in Plant Science, 2017, 8: 1098 刘晓庆, 陈华涛, 张红梅, 等. 大豆GmbHLH041基因的生物信息学分析及对镉胁迫的响应[J]. 华北农学报, 2018, 33(3): 14-18 Liu X Q, Chen H T, Zhang H M, et al. Bioinformatics analysis of GmbHLH041 of soybean and its response to cadmium stress [J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 14-18 (in Chinese)
Das B, Sen A, Roy S, et al. miRNAs: Tiny super-soldiers shaping the life of rice plants for facing “stress”-ful times [J]. Plant Gene, 2021, 26: 100281 Ding Y F, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa) [J]. Journal of Experimental Botany, 2011, 62(10): 3563-3573 Tang M F, Mao D H, Xu L W, et al. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings [J]. BMC Genomics, 2014, 15(1): 835 Jian H J, Yang B, Zhang A X, et al. Genome-wide identification of microRNAs in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing [J]. International Journal of Molecular Sciences, 2018, 19(5): 1431 Ding Y F, Gong S H, Wang Y, et al. microRNA166 modulates cadmium tolerance and accumulation in rice [J]. Plant Physiology, 2018, 177(4): 1691-1703 Ding Y F, Ye Y Y, Jiang Z H, et al. microRNA390 is involved in cadmium tolerance and accumulation in rice [J]. Frontiers in Plant Science, 2016, 7: 235 Qiu Z B, Hai B Z, Guo J L, et al. Characterization of wheat miRNAs and their target genes responsive to cadmium stress [J]. Plant Physiology and Biochemistry, 2016, 101: 60-67 Pagano L, Rossi R, Paesano L, et al. miRNA regulation and stress adaptation in plants [J]. Environmental and Experimental Botany, 2021, 184: 104369 Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth [J]. Environmental Science and Pollution Research International, 2017, 24(11): 10068-10082 -

计量
- 文章访问数: 5678
- HTML全文浏览数: 5678
- PDF下载数: 227
- 施引文献: 0