浮萍在水体污染修复中的应用研究进展

吴颖琳, 杨愿愿, 熊倩, 王犇, 刘芳, 应光国. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
引用本文: 吴颖琳, 杨愿愿, 熊倩, 王犇, 刘芳, 应光国. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
Wu Yinglin, Yang Yuanyuan, Xiong Qian, Wang Ben, Liu Fang, Ying Guangguo. Research Advances on Application of Duckweed in Bioremediation of Polluted Water[J]. Asian journal of ecotoxicology, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
Citation: Wu Yinglin, Yang Yuanyuan, Xiong Qian, Wang Ben, Liu Fang, Ying Guangguo. Research Advances on Application of Duckweed in Bioremediation of Polluted Water[J]. Asian journal of ecotoxicology, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002

浮萍在水体污染修复中的应用研究进展

    作者简介: 吴颖琳(1996—),女,硕士研究生,研究方向为污染物化学与生态毒理,E-mail: yinglin.wu@m.scnu.edu.cn
    通讯作者: 熊倩, E-mail: qian.xiong@m.scnu.edu.cn 刘芳, E-mail: liufang77@m.scnu.edu.cn
  • 基金项目:

    广东省化学品污染与环境安全重点实验室项目(2019B030301008);广东省自然科学基金资助项目(2020A1515110926);中国博士后科学基金资助项目(2021M701272);国家自然科学基金资助项目(42107433)

  • 中图分类号: X171.5

Research Advances on Application of Duckweed in Bioremediation of Polluted Water

    Corresponding authors: Xiong Qian, qian.xiong@m.scnu.edu.cn ;  Liu Fang, liufang77@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 浮萍是世界上最小的开花植物,其个体微小、结构简单、无性繁殖快、富含淀粉和蛋白,广泛分布于各类淡水生境,对环境适应能力强。基于上述优势特征,浮萍常用于生物能源开发、环境监测和水体污染修复等方面的研究。本文介绍了浮萍在水体污染修复领域中的应用研究进展,详细阐述了浮萍对氮磷营养盐、重金属以及有机污染物的吸收积累研究概况,并对浮萍未来的研究方向和应用前景进行了展望。未来在浮萍对污染物的吸收累积机制方面还需要开展进一步深入研究,从技术、环境友好和经济竞争力等方面提高其性能,并扩大其在大规模环境中的应用,以期为浮萍在水体污染修复中的推广应用提供科学依据。
  • 加载中
  • Kookana R S, Drechsel P, Jamwal P, et al. Urbanisation and emerging economies:Issues and potential solutions for water and food security[J]. Science of the Total Environment, 2020, 732:139057
    Hu H, Li X, Wu S H, et al. Sustainable livestock wastewater treatment via phytoremediation:Current status and future perspectives[J]. Bioresource Technology, 2020, 315:123809
    呼尔西旦·吾斯曼.植物修复技术及其在环境保护中的应用[J].皮革制作与环保科技, 2020, 1(24):29-31
    王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国生态农业学报, 2013, 21(2):261-266

    Wang Q H, Que X E. Phytoremediation:A green approach to environmental clean-up[J]. Chinese Journal of Eco-Agriculture, 2013, 21(2):261-266(in Chinese)

    Markou G, Wang L, Ye J F, et al. Using agro-industrial wastes for the cultivation of microalgae and duckweeds:Contamination risks and biomass safety concerns[J]. Biotechnology Advances, 2018, 36(4):1238-1254
    Donald H L, Daniel J C, Elias L, et al. Phylogeny and systematics of Lemnaceae, the duckweed family[J]. Systematic Botany, 2002, 27(2):221-240
    杨晶晶,赵旭耀,李高洁,等.浮萍的研究及应用[J].科学通报, 2021, 66(9):1026-1045

    Yang J J, Zhao X Y, Li G J, et al. Research and application in duckweeds:A review[J]. Chinese Science Bulletin, 2021, 66(9):1026-1045(in Chinese)

    Ali S, Abbas Z, Rizwan M, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water:A review[J]. Sustainability, 2020, 12(5):1927
    李燕.污水处理脱氮除磷工艺的研究进展[J].中国资源综合利用, 2020, 38(6):105-107

    Li Y. Research progress of nitrogen and phosphorus removal processes in wastewater treatment[J]. China Resources Comprehensive Utilization, 2020, 38(6):105-107(in Chinese)

    Toyama T, Hanaoka T, Tanaka Y, et al. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent[J]. Bioresource Technology, 2018, 250:464-473
    Liu Y, Xu H, Yu C J, et al. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis[J]. GCB Bioenergy, 2021, 13(1):70-82
    Priya A, Avishek K, Pathak G. Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale[J]. Environmental Monitoring and Assessment, 2012, 184(7):4301-4307
    李琪,方扬,许亚良,等.少根紫萍对微污染地表水的净化及淀粉积累能力[J].应用与环境生物学报, 2018, 24(6):1324-1329

    Li Q, Fang Y, Xu Y L, et al. Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6):1324-1329(in Chinese)

    谢朦,张飞,章莹颖,等. 3种浮萍对富营养化水体的修复[J].环境工程学报, 2016, 10(5):2447-2453

    Xie M, Zhang F, Zhang Y Y, et al. Effect of three duckweed species on remediation of eutrophic water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5):2447-2453(in Chinese)

    Yilmaz D D, Akbulut H. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor(floating aquatic macrophytes)[J]. International Journal of Phytoremediation, 2011, 13(10):970-984
    顾新娇,杨闯,王文国,等.不同浓度养殖废水对青萍生长能力的影响[J].环境工程学报, 2015, 9(3):1103-1108

    Gu X J, Yang C, Wang W G, et al. Influence of livestock wastewater concentration on growth of common duckweed (Lemna minor)[J]. Chinese Journal of Environmental Engineering, 2015, 9(3):1103-1108(in Chinese)

    Jayashree M, Muthukumar B, Arockiasamy D I. Efficiency of Spirodela polyrhiza(L.) Schleiden in absorbing and utilizing different forms of nitrogen[J]. Journal of Environmental Biology, 1996, 17(3):227-233
    沈根祥,姚芳,胡宏,等.浮萍吸收不同形态氮的动力学特性研究[J].土壤通报, 2006, 37(3):505-508

    Shen G X, Yao F, Hu H, et al. The kinetics of ammonium and nitrate uptake by duckweed (Spirodela oligorrhiza) plant[J]. Chinese Journal of Soil Science, 2006, 37(3):505-508(in Chinese)

    van Echelpoel W, Boets P, Goethals P L M. Functional response (FR) and relative growth rate (RGR) do not show the known invasiveness of Lemna minuta(Kunth)[J]. PLoS One, 2016, 11(11):e0166132
    Griffith A P, Epplin F M, Fuhlendorf S D, et al. A comparison of perennial polycultures and monocultures for producing biomass for biorefinery feedstock[J]. Agronomy Journal, 2011, 103(3):617-627
    Crawford K M, Whitney K D. Population genetic diversity influences colonization success[J]. Molecular Ecology, 2010, 19(6):1253-1263
    李阳,成家杨,钟钰,等.浮萍多样性对富营养化水体净化效果的影响[J].南方农业学报, 2017, 48(2):259-265

    Li Y, Cheng J Y, Zhong Y, et al. Effects of duckweed diversity on purifying eutrophic water[J]. Journal of Southern Agriculture, 2017, 48(2):259-265(in Chinese)

    Zhao X, Moates G K, Wellner N, et al. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor)[J]. Carbohydrate Polymers, 2014, 111:410-418
    邓鸿杨.不同类型水生植物组合去除氮磷效果[J].绿色科技, 2018(10):73-76, 84
    Ishizawa H, Kuroda M, Morikawa M, et al. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria[J]. Plant Physiology and Biochemistry, 2017, 118:667-673
    Chen G K, Huang J, Fang Y, et al. Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake Basin[J]. Bioresource Technology, 2019, 276:8-17
    Ishizawa H, Ogata Y, Hachiya Y, et al. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23[J]. Chemosphere, 2020, 238:124682
    马继.重金属污染现状及新形势下的环境污染治理方法研究[J].中国资源综合利用, 2019, 37(10):148-150

    Ma J. Research on the current situation of heavy metal pollution and the method of environmental pollution control under the new situation[J]. China Resources Comprehensive Utilization, 2019, 37(10):148-150(in Chinese)

    Rezania S, Taib S M, Md Din M F, et al. Comprehensive review on phytotechnology:Heavy metals removal by diverse aquatic plants species from wastewater[J]. Journal of Hazardous Materials, 2016, 318:587-599
    Martín-Lara M A, Blázquez G, Trujillo M C, et al. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone[J]. Journal of Cleaner Production, 2014, 81:120-129
    崔姜伟,崔卫华,郝春博.浮萍在环境保护领域的应用研究进展[J].环境工程, 2015, 33(S1):306-309

    Cui J W, Cui W H, Hao C B. The research progress in application of duckweed in environmental preservation[J]. Environmental Engineering, 2015, 33(S1):306-309(in Chinese)

    Zhou Q, Lin Y, Li X, et al. Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater[J]. Bioresource Technology, 2018, 249:457-463
    Guimaraes F P, Aguiar R, Oliveira J A, et al. Potential of macrophyte for removing arsenic from aqueous solution[J]. Planta Daninha, 2012, 30(4):683-696
    Uysal Y, Taner F. Bioremoval of cadmium by Lemna minor in different aquatic conditions[J]. CLEAN-Soil, Air, Water, 2010, 38(4):370-377
    焦轶男,朱宏.水体重金属污染植物修复研究进展[J].生物学杂志, 2014, 31(1):71-74

    Jiao Y N, Zhu H. Research progress in phytoremediation for heavy metal pollution[J]. Journal of Biology, 2014, 31(1):71-74(in Chinese)

    Chen D Q, Zhang H, Wang Q L, et al. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza)[J]. Journal of Hazardous Materials, 2020, 395:122672
    Zhao Z, Shi H J, Duan D Z, et al. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure[J]. Aquatic Toxicology, 2015, 164:92-98
    Zhao Z, Shi H J, Liu C Q, et al. Duckweed diversity decreases heavy metal toxicity by altering the metabolic function of associated microbial communities[J]. Chemosphere, 2018, 203:76-82
    Stout L M, Dodova E N, Tyson J F, et al. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor[J]. Water Research, 2010, 44(17):4970-4979
    彭赟,严彬.浮萍对重金属离子的吸附作用研究[J].生物学教学, 2010, 35(10):68-70
    冯丹,谭艾娟,杨贵利,等.浮萍在重金属污染水体方面的应用[C]//中国环境科学学会环境工程分会.中国环境科学学会2019年科学技术年会.环境工程技术创新与应用分论坛论文集(三).西安:中国环境科学学会, 2019:7
    王秀娟.铜、镍和铬单一和联合作用对植物的影响[D].青岛:青岛科技大学, 2005:61-65 Wang X J. Effect of copper, chromium and nickel single and combined pollution on several plants[D]. Qingdao:Qingdao University of Science&Technology, 2005:61

    -65(in Chinese)

    Bokhari S H, Ahmad I, Mahmood-Ul-Hassan M, et al. Phytoremediation potential of Lemna minor L. for heavy metals[J]. International Journal of Phytoremediation, 2016, 18(1):25-32
    陈兰钗,方扬,靳艳玲,等.浮萍(Lemna aequinoctialis)干粉对Pb2+的吸附[J].应用与环境生物学报, 2013, 19(6):1046-1052

    Chen L C, Fang Y, Jin Y L, et al. Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis)[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(6):1046-1052(in Chinese)

    李阳,成家杨,钟钰,等. 2种浮萍干粉对Cd2+的吸附性能[J].江苏农业科学, 2017, 45(15):248-254
    Megateli S, Semsari S, Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1774-1780
    Cvjetko P, Tolić S, Sikić S, et al. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.)[J]. Archives of Industrial Hygiene and Toxicology, 2010, 61(3):287-296
    Abdallah M A M. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.[J]. Environmental Technology, 2012, 33(13-15):1609-1614
    Teixeira S, Vieira M N, Espinha Marques J, et al. Bioremediation of an iron-rich mine effluent by Lemna minor[J]. International Journal of Phytoremediation, 2014, 16(7-12):1228-1240
    王凤珍,宋新娟,徐俊辉,等.墨水湖湖滨带水生植物重金属富集能力研究[J].武汉理工大学学报, 2014, 36(11):114-118

    Wang F Z, Song X J, Xu J H, et al. Absorption and accumulation of heavy metals by aquatic plants in lakeside zone of Moshui Lake[J]. Journal of Wuhan University of Technology, 2014, 36(11):114-118(in Chinese)

    Török A, Gulyás Z, Szalai G, et al. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization[J]. Journal of Hazardous Materials, 2015, 299:371-378
    Singh N K, Raghubanshi A S, Upadhyay A K, et al. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India[J]. Ecotoxicology and Environmental Safety, 2016, 130:224-233
    Romero-Hernández J A, Amaya-Chávez A, Balderas-Hernández P, et al. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes[J]. International Journal of Phytoremediation, 2017, 19(3):239-245
    Liu C G, Gu W C, Dai Z, et al. Boron accumulation by Lemna minor L. under salt stress[J]. Scientific Reports, 2018, 8(1):8954
    Rai P K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland[J]. Environmental Technology&Innovation, 2019, 15:100393
    张灿.水体有机污染现状及其治理对策[J].科技风, 2017(8):148
    刘娥,张建,魏榕,等.有机污染胁迫对人工湿地中浮萍抗氧化系统的影响[J].环境工程学报, 2013, 7(9):3296-3300

    Liu E, Zhang J, Wei R, et al. Effect of organic pollutants stresses on antioxidant defense system of duckweed (Lemna minor)[J]. Chinese Journal of Environmental Engineering, 2013, 7(9):3296-3300(in Chinese)

    Sikorski Ł, Baciak M, Bęś A, et al. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species[J]. Aquatic Toxicology, 2019, 209:70-80
    Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza:Growth, oxidative stress, biochemical traits and antibiotic degradation[J]. Chemosphere, 2018, 201:492-502
    Gatidou G, Oursouzidou M, Stefanatou A, et al. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems[J]. The Science of the Total Environment, 2017, 596-597:12-17
    Ekperusi A O, Sikoki F D, Nwachukwu E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment:State and future perspective[J]. Chemosphere, 2019, 223:285-309
    Dosnon-Olette R, Couderchet M, Oturan M A, et al. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate[J]. International Journal of Phytoremediation, 2011, 13(6):601-612
    Olette R, Couderchet M, Biagianti S, et al. Toxicity and removal of pesticides by selected aquatic plants[J]. Chemosphere, 2008, 70(8):1414-1421
    YılmazÖ, Taş B. Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin insecticide removal[J]. Desalination and Water Treatment, 2021, 209:131-143
    Dosnon-Olette R, Couderchet M, El Arfaoui A, et al. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species[J]. Science of the Total Environment, 2010, 408(10):2254-2259
    Prasertsup P, Ariyakanon N. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.)[J]. International Journal of Phytoremediation, 2011, 13(4):383-395
    Panfili I, Bartucca M L, del Buono D. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine[J]. Science of the Total Environment, 2019, 646:832-840
    Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment:A review[J]. Science of the Total Environment, 2021, 788:147819
    Peng F J, Pan C G, Zhang M, et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers:Guangzhou as a case study in China[J]. Science of the Total Environment, 2017, 589:46-55
    Iatrou E I, Gatidou G, Damalas D, et al. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems[J]. Journal of Hazardous Materials, 2017, 330:116-126
    Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149
    Zhang W L, Liang Y N. Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed[J]. Science of the Total Environment, 2020, 724:138357
    Zhang W L, Liang Y N. Interactions between Lemna minor(common duckweed) and PFAS intermediates:Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA)[J]. Chemosphere, 2021, 276:130165
    Can-Terzi B, Goren A Y, Okten H E, et al. Biosorption of methylene blue from water by live Lemna minor[J]. Environmental Technology&Innovation, 2021, 22:101432
    Ekperusi A O, Nwachukwu E O, Sikoki F D. Assessing and modelling the efficacy of Lemna paucicostata for the phytoremediation of petroleum hydrocarbons in crude oil-contaminated wetlands[J]. Scientific Reports, 2020, 10(1):8489
    韩玉洁,杨琳,赵玲,等.浮萍植物在水体净化中的研究及展望[J].生物学通报, 2016, 51(6):4-7
  • 加载中
计量
  • 文章访问数:  3878
  • HTML全文浏览数:  3878
  • PDF下载数:  129
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-08-31
吴颖琳, 杨愿愿, 熊倩, 王犇, 刘芳, 应光国. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
引用本文: 吴颖琳, 杨愿愿, 熊倩, 王犇, 刘芳, 应光国. 浮萍在水体污染修复中的应用研究进展[J]. 生态毒理学报, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
Wu Yinglin, Yang Yuanyuan, Xiong Qian, Wang Ben, Liu Fang, Ying Guangguo. Research Advances on Application of Duckweed in Bioremediation of Polluted Water[J]. Asian journal of ecotoxicology, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002
Citation: Wu Yinglin, Yang Yuanyuan, Xiong Qian, Wang Ben, Liu Fang, Ying Guangguo. Research Advances on Application of Duckweed in Bioremediation of Polluted Water[J]. Asian journal of ecotoxicology, 2022, 17(2): 74-85. doi: 10.7524/AJE.1673-5897.20210831002

浮萍在水体污染修复中的应用研究进展

    通讯作者: 熊倩, E-mail: qian.xiong@m.scnu.edu.cn ;  刘芳, E-mail: liufang77@m.scnu.edu.cn
    作者简介: 吴颖琳(1996—),女,硕士研究生,研究方向为污染物化学与生态毒理,E-mail: yinglin.wu@m.scnu.edu.cn
  • 1. 华南师范大学环境学院,广州 510006;
  • 2. 华南师范大学广东省化学品污染与环境安全重点实验室,环境理论化学教育部重点实验室,广州 510006;
  • 3. 华南师范大学地理科学学院,广州 510623
基金项目:

广东省化学品污染与环境安全重点实验室项目(2019B030301008);广东省自然科学基金资助项目(2020A1515110926);中国博士后科学基金资助项目(2021M701272);国家自然科学基金资助项目(42107433)

摘要: 浮萍是世界上最小的开花植物,其个体微小、结构简单、无性繁殖快、富含淀粉和蛋白,广泛分布于各类淡水生境,对环境适应能力强。基于上述优势特征,浮萍常用于生物能源开发、环境监测和水体污染修复等方面的研究。本文介绍了浮萍在水体污染修复领域中的应用研究进展,详细阐述了浮萍对氮磷营养盐、重金属以及有机污染物的吸收积累研究概况,并对浮萍未来的研究方向和应用前景进行了展望。未来在浮萍对污染物的吸收累积机制方面还需要开展进一步深入研究,从技术、环境友好和经济竞争力等方面提高其性能,并扩大其在大规模环境中的应用,以期为浮萍在水体污染修复中的推广应用提供科学依据。

English Abstract

参考文献 (76)

返回顶部

目录

/

返回文章
返回