浮萍在水体污染修复中的应用研究进展
Research Advances on Application of Duckweed in Bioremediation of Polluted Water
-
摘要: 浮萍是世界上最小的开花植物,其个体微小、结构简单、无性繁殖快、富含淀粉和蛋白,广泛分布于各类淡水生境,对环境适应能力强。基于上述优势特征,浮萍常用于生物能源开发、环境监测和水体污染修复等方面的研究。本文介绍了浮萍在水体污染修复领域中的应用研究进展,详细阐述了浮萍对氮磷营养盐、重金属以及有机污染物的吸收积累研究概况,并对浮萍未来的研究方向和应用前景进行了展望。未来在浮萍对污染物的吸收累积机制方面还需要开展进一步深入研究,从技术、环境友好和经济竞争力等方面提高其性能,并扩大其在大规模环境中的应用,以期为浮萍在水体污染修复中的推广应用提供科学依据。Abstract: As the smallest flowering plants, duckweeds are easy to accumulate biomass due to their rapid asexual propagation. Moreover, their accumulated biomass is rich in starch and protein, which can be used for feed applications and biofuels. Besides, they are widely distributed in a variety of climates all over the world with their strong adaptation to various environments. Based on above mentioned characteristics, duckweeds are widely used for the production of biofuels, test of eco-toxicity, and bioremediation of polluted water. Here we reviewed the current status of duckweed application in bioremediation of polluted water, focusing on the uptake and accumulation of nitrogen and phosphorus, heavy metals, and organic pollutants by duckweed. Then we presented some research challenges and proposed future directions of duckweed research. Further studies should explore the removal mechanisms of pollutants by duckweed, and optimize duckweed-based wastewater treatment technologies with emphasis on improving performance and expanding its application in large scale settings, especially in terms of technical, environmental-friendly and economically competitiveness. This provides scientific basis for the practical application of duckweed in polluted water bioremediation.
-
Key words:
- duckweed /
- bioremediation /
- nitrogen and phosphorus /
- heavy metal /
- organic pollutants
-
-
Kookana R S, Drechsel P, Jamwal P, et al. Urbanisation and emerging economies:Issues and potential solutions for water and food security[J]. Science of the Total Environment, 2020, 732:139057 Hu H, Li X, Wu S H, et al. Sustainable livestock wastewater treatment via phytoremediation:Current status and future perspectives[J]. Bioresource Technology, 2020, 315:123809 呼尔西旦·吾斯曼.植物修复技术及其在环境保护中的应用[J].皮革制作与环保科技, 2020, 1(24):29-31 王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国生态农业学报, 2013, 21(2):261-266 Wang Q H, Que X E. Phytoremediation:A green approach to environmental clean-up[J]. Chinese Journal of Eco-Agriculture, 2013, 21(2):261-266(in Chinese)
Markou G, Wang L, Ye J F, et al. Using agro-industrial wastes for the cultivation of microalgae and duckweeds:Contamination risks and biomass safety concerns[J]. Biotechnology Advances, 2018, 36(4):1238-1254 Donald H L, Daniel J C, Elias L, et al. Phylogeny and systematics of Lemnaceae, the duckweed family[J]. Systematic Botany, 2002, 27(2):221-240 杨晶晶,赵旭耀,李高洁,等.浮萍的研究及应用[J].科学通报, 2021, 66(9):1026-1045 Yang J J, Zhao X Y, Li G J, et al. Research and application in duckweeds:A review[J]. Chinese Science Bulletin, 2021, 66(9):1026-1045(in Chinese)
Ali S, Abbas Z, Rizwan M, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water:A review[J]. Sustainability, 2020, 12(5):1927 李燕.污水处理脱氮除磷工艺的研究进展[J].中国资源综合利用, 2020, 38(6):105-107 Li Y. Research progress of nitrogen and phosphorus removal processes in wastewater treatment[J]. China Resources Comprehensive Utilization, 2020, 38(6):105-107(in Chinese)
Toyama T, Hanaoka T, Tanaka Y, et al. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent[J]. Bioresource Technology, 2018, 250:464-473 Liu Y, Xu H, Yu C J, et al. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis[J]. GCB Bioenergy, 2021, 13(1):70-82 Priya A, Avishek K, Pathak G. Assessing the potentials of Lemna minor in the treatment of domestic wastewater at pilot scale[J]. Environmental Monitoring and Assessment, 2012, 184(7):4301-4307 李琪,方扬,许亚良,等.少根紫萍对微污染地表水的净化及淀粉积累能力[J].应用与环境生物学报, 2018, 24(6):1324-1329 Li Q, Fang Y, Xu Y L, et al. Duckweed Landoltia punctata purifies micro-polluted surface water and produces starch[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6):1324-1329(in Chinese)
谢朦,张飞,章莹颖,等. 3种浮萍对富营养化水体的修复[J].环境工程学报, 2016, 10(5):2447-2453 Xie M, Zhang F, Zhang Y Y, et al. Effect of three duckweed species on remediation of eutrophic water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5):2447-2453(in Chinese)
Yilmaz D D, Akbulut H. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor(floating aquatic macrophytes)[J]. International Journal of Phytoremediation, 2011, 13(10):970-984 顾新娇,杨闯,王文国,等.不同浓度养殖废水对青萍生长能力的影响[J].环境工程学报, 2015, 9(3):1103-1108 Gu X J, Yang C, Wang W G, et al. Influence of livestock wastewater concentration on growth of common duckweed (Lemna minor)[J]. Chinese Journal of Environmental Engineering, 2015, 9(3):1103-1108(in Chinese)
Jayashree M, Muthukumar B, Arockiasamy D I. Efficiency of Spirodela polyrhiza(L.) Schleiden in absorbing and utilizing different forms of nitrogen[J]. Journal of Environmental Biology, 1996, 17(3):227-233 沈根祥,姚芳,胡宏,等.浮萍吸收不同形态氮的动力学特性研究[J].土壤通报, 2006, 37(3):505-508 Shen G X, Yao F, Hu H, et al. The kinetics of ammonium and nitrate uptake by duckweed (Spirodela oligorrhiza) plant[J]. Chinese Journal of Soil Science, 2006, 37(3):505-508(in Chinese)
van Echelpoel W, Boets P, Goethals P L M. Functional response (FR) and relative growth rate (RGR) do not show the known invasiveness of Lemna minuta(Kunth)[J]. PLoS One, 2016, 11(11):e0166132 Griffith A P, Epplin F M, Fuhlendorf S D, et al. A comparison of perennial polycultures and monocultures for producing biomass for biorefinery feedstock[J]. Agronomy Journal, 2011, 103(3):617-627 Crawford K M, Whitney K D. Population genetic diversity influences colonization success[J]. Molecular Ecology, 2010, 19(6):1253-1263 李阳,成家杨,钟钰,等.浮萍多样性对富营养化水体净化效果的影响[J].南方农业学报, 2017, 48(2):259-265 Li Y, Cheng J Y, Zhong Y, et al. Effects of duckweed diversity on purifying eutrophic water[J]. Journal of Southern Agriculture, 2017, 48(2):259-265(in Chinese)
Zhao X, Moates G K, Wellner N, et al. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor)[J]. Carbohydrate Polymers, 2014, 111:410-418 邓鸿杨.不同类型水生植物组合去除氮磷效果[J].绿色科技, 2018(10):73-76, 84 Ishizawa H, Kuroda M, Morikawa M, et al. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria[J]. Plant Physiology and Biochemistry, 2017, 118:667-673 Chen G K, Huang J, Fang Y, et al. Microbial community succession and pollutants removal of a novel carriers enhanced duckweed treatment system for rural wastewater in Dianchi Lake Basin[J]. Bioresource Technology, 2019, 276:8-17 Ishizawa H, Ogata Y, Hachiya Y, et al. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23[J]. Chemosphere, 2020, 238:124682 马继.重金属污染现状及新形势下的环境污染治理方法研究[J].中国资源综合利用, 2019, 37(10):148-150 Ma J. Research on the current situation of heavy metal pollution and the method of environmental pollution control under the new situation[J]. China Resources Comprehensive Utilization, 2019, 37(10):148-150(in Chinese)
Rezania S, Taib S M, Md Din M F, et al. Comprehensive review on phytotechnology:Heavy metals removal by diverse aquatic plants species from wastewater[J]. Journal of Hazardous Materials, 2016, 318:587-599 Martín-Lara M A, Blázquez G, Trujillo M C, et al. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone[J]. Journal of Cleaner Production, 2014, 81:120-129 崔姜伟,崔卫华,郝春博.浮萍在环境保护领域的应用研究进展[J].环境工程, 2015, 33(S1):306-309 Cui J W, Cui W H, Hao C B. The research progress in application of duckweed in environmental preservation[J]. Environmental Engineering, 2015, 33(S1):306-309(in Chinese)
Zhou Q, Lin Y, Li X, et al. Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater[J]. Bioresource Technology, 2018, 249:457-463 Guimaraes F P, Aguiar R, Oliveira J A, et al. Potential of macrophyte for removing arsenic from aqueous solution[J]. Planta Daninha, 2012, 30(4):683-696 Uysal Y, Taner F. Bioremoval of cadmium by Lemna minor in different aquatic conditions[J]. CLEAN-Soil, Air, Water, 2010, 38(4):370-377 焦轶男,朱宏.水体重金属污染植物修复研究进展[J].生物学杂志, 2014, 31(1):71-74 Jiao Y N, Zhu H. Research progress in phytoremediation for heavy metal pollution[J]. Journal of Biology, 2014, 31(1):71-74(in Chinese)
Chen D Q, Zhang H, Wang Q L, et al. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza)[J]. Journal of Hazardous Materials, 2020, 395:122672 Zhao Z, Shi H J, Duan D Z, et al. The influence of duckweed species diversity on ecophysiological tolerance to copper exposure[J]. Aquatic Toxicology, 2015, 164:92-98 Zhao Z, Shi H J, Liu C Q, et al. Duckweed diversity decreases heavy metal toxicity by altering the metabolic function of associated microbial communities[J]. Chemosphere, 2018, 203:76-82 Stout L M, Dodova E N, Tyson J F, et al. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor[J]. Water Research, 2010, 44(17):4970-4979 彭赟,严彬.浮萍对重金属离子的吸附作用研究[J].生物学教学, 2010, 35(10):68-70 冯丹,谭艾娟,杨贵利,等.浮萍在重金属污染水体方面的应用[C]//中国环境科学学会环境工程分会.中国环境科学学会2019年科学技术年会.环境工程技术创新与应用分论坛论文集(三).西安:中国环境科学学会, 2019:7 王秀娟.铜、镍和铬单一和联合作用对植物的影响[D].青岛:青岛科技大学, 2005:61-65 Wang X J. Effect of copper, chromium and nickel single and combined pollution on several plants[D]. Qingdao:Qingdao University of Science&Technology, 2005:61 -65(in Chinese)
Bokhari S H, Ahmad I, Mahmood-Ul-Hassan M, et al. Phytoremediation potential of Lemna minor L. for heavy metals[J]. International Journal of Phytoremediation, 2016, 18(1):25-32 陈兰钗,方扬,靳艳玲,等.浮萍(Lemna aequinoctialis)干粉对Pb2+的吸附[J].应用与环境生物学报, 2013, 19(6):1046-1052 Chen L C, Fang Y, Jin Y L, et al. Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis)[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(6):1046-1052(in Chinese)
李阳,成家杨,钟钰,等. 2种浮萍干粉对Cd2+的吸附性能[J].江苏农业科学, 2017, 45(15):248-254 Megateli S, Semsari S, Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1774-1780 Cvjetko P, Tolić S, Sikić S, et al. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.)[J]. Archives of Industrial Hygiene and Toxicology, 2010, 61(3):287-296 Abdallah M A M. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.[J]. Environmental Technology, 2012, 33(13-15):1609-1614 Teixeira S, Vieira M N, Espinha Marques J, et al. Bioremediation of an iron-rich mine effluent by Lemna minor[J]. International Journal of Phytoremediation, 2014, 16(7-12):1228-1240 王凤珍,宋新娟,徐俊辉,等.墨水湖湖滨带水生植物重金属富集能力研究[J].武汉理工大学学报, 2014, 36(11):114-118 Wang F Z, Song X J, Xu J H, et al. Absorption and accumulation of heavy metals by aquatic plants in lakeside zone of Moshui Lake[J]. Journal of Wuhan University of Technology, 2014, 36(11):114-118(in Chinese)
Török A, Gulyás Z, Szalai G, et al. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization[J]. Journal of Hazardous Materials, 2015, 299:371-378 Singh N K, Raghubanshi A S, Upadhyay A K, et al. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India[J]. Ecotoxicology and Environmental Safety, 2016, 130:224-233 Romero-Hernández J A, Amaya-Chávez A, Balderas-Hernández P, et al. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes[J]. International Journal of Phytoremediation, 2017, 19(3):239-245 Liu C G, Gu W C, Dai Z, et al. Boron accumulation by Lemna minor L. under salt stress[J]. Scientific Reports, 2018, 8(1):8954 Rai P K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland[J]. Environmental Technology&Innovation, 2019, 15:100393 张灿.水体有机污染现状及其治理对策[J].科技风, 2017(8):148 刘娥,张建,魏榕,等.有机污染胁迫对人工湿地中浮萍抗氧化系统的影响[J].环境工程学报, 2013, 7(9):3296-3300 Liu E, Zhang J, Wei R, et al. Effect of organic pollutants stresses on antioxidant defense system of duckweed (Lemna minor)[J]. Chinese Journal of Environmental Engineering, 2013, 7(9):3296-3300(in Chinese)
Sikorski Ł, Baciak M, Bęś A, et al. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species[J]. Aquatic Toxicology, 2019, 209:70-80 Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza:Growth, oxidative stress, biochemical traits and antibiotic degradation[J]. Chemosphere, 2018, 201:492-502 Gatidou G, Oursouzidou M, Stefanatou A, et al. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems[J]. The Science of the Total Environment, 2017, 596-597:12-17 Ekperusi A O, Sikoki F D, Nwachukwu E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment:State and future perspective[J]. Chemosphere, 2019, 223:285-309 Dosnon-Olette R, Couderchet M, Oturan M A, et al. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate[J]. International Journal of Phytoremediation, 2011, 13(6):601-612 Olette R, Couderchet M, Biagianti S, et al. Toxicity and removal of pesticides by selected aquatic plants[J]. Chemosphere, 2008, 70(8):1414-1421 YılmazÖ, Taş B. Feasibility and assessment of the phytoremediation potential of green microalga and duckweed for zeta-cypermethrin insecticide removal[J]. Desalination and Water Treatment, 2021, 209:131-143 Dosnon-Olette R, Couderchet M, El Arfaoui A, et al. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species[J]. Science of the Total Environment, 2010, 408(10):2254-2259 Prasertsup P, Ariyakanon N. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.)[J]. International Journal of Phytoremediation, 2011, 13(4):383-395 Panfili I, Bartucca M L, del Buono D. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine[J]. Science of the Total Environment, 2019, 646:832-840 Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment:A review[J]. Science of the Total Environment, 2021, 788:147819 Peng F J, Pan C G, Zhang M, et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers:Guangzhou as a case study in China[J]. Science of the Total Environment, 2017, 589:46-55 Iatrou E I, Gatidou G, Damalas D, et al. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems[J]. Journal of Hazardous Materials, 2017, 330:116-126 Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149 Zhang W L, Liang Y N. Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed[J]. Science of the Total Environment, 2020, 724:138357 Zhang W L, Liang Y N. Interactions between Lemna minor(common duckweed) and PFAS intermediates:Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA)[J]. Chemosphere, 2021, 276:130165 Can-Terzi B, Goren A Y, Okten H E, et al. Biosorption of methylene blue from water by live Lemna minor[J]. Environmental Technology&Innovation, 2021, 22:101432 Ekperusi A O, Nwachukwu E O, Sikoki F D. Assessing and modelling the efficacy of Lemna paucicostata for the phytoremediation of petroleum hydrocarbons in crude oil-contaminated wetlands[J]. Scientific Reports, 2020, 10(1):8489 韩玉洁,杨琳,赵玲,等.浮萍植物在水体净化中的研究及展望[J].生物学通报, 2016, 51(6):4-7 -

计量
- 文章访问数: 3878
- HTML全文浏览数: 3878
- PDF下载数: 129
- 施引文献: 0