粮食真菌毒素的生殖、发育与遗传毒性:现状与展望

任思瑞, 周鸿媛, 刘榕, 郭婷, 张宇昊, 马良. 粮食真菌毒素的生殖、发育与遗传毒性:现状与展望[J]. 生态毒理学报, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
引用本文: 任思瑞, 周鸿媛, 刘榕, 郭婷, 张宇昊, 马良. 粮食真菌毒素的生殖、发育与遗传毒性:现状与展望[J]. 生态毒理学报, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
Ren Sirui, Zhou Hongyuan, Liu Rong, Guo Ting, Zhang Yuhao, Ma Liang. Reproductive, Developmental and Genetic Toxicities of Grain Mycotoxins: Current Status and Prospects[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
Citation: Ren Sirui, Zhou Hongyuan, Liu Rong, Guo Ting, Zhang Yuhao, Ma Liang. Reproductive, Developmental and Genetic Toxicities of Grain Mycotoxins: Current Status and Prospects[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004

粮食真菌毒素的生殖、发育与遗传毒性:现状与展望

    作者简介: 任思瑞(1997-),女,硕士研究生,研究方向为食品安全评价与检测,E-mail:18234494373@163.com
    通讯作者: 周鸿媛, E-mail: zhouhy@swu.edu.cn 马良, E-mail: zhyhml@163.com
  • 基金项目:

    国家自然科学基金资助项目(32001810)

    重庆市基础研究与前沿探索专项项目(cstc2019jcyj-msxmX0278)

    国家自然科学基金资助项目(32072137)

    中央高校基本科研业务费面上项目(XDJK2020C052)

  • 中图分类号: X171.5

Reproductive, Developmental and Genetic Toxicities of Grain Mycotoxins: Current Status and Prospects

    Corresponding authors: Zhou Hongyuan, zhouhy@swu.edu.cn ;  Ma Liang, zhyhml@163.com
  • Fund Project:
  • 摘要: 粮食及其制品会受到多种真菌毒素的污染。粮食真菌毒素现已被证实具有多种毒性作用,如细胞毒性、发育毒性、生殖毒性、免疫毒性和遗传毒性等,严重危害人和动物健康,甚至还会对间接或未接触毒素的子代产生不良影响,但目前有关继代毒理学数据极为缺乏。本文主要阐述了粮食中常见真菌毒素对亲本世代及其子代生殖系统/能力和生长发育的影响,简述了不同毒素诱导生殖发育毒性的作用机理并提出展望,旨在全面了解粮食真菌毒素的生殖发育及遗传毒性作用,为进一步开展粮食真菌毒素的健康风险评估,合理制定相关限量标准与法规,指导公共卫生健康并开展主动防治与干预提供重要理论依据。
  • 加载中
  • Zhou H Y, George S, Li C X, et al. Combined toxicity of prevalent mycotoxins studied in fish cell line and zebrafish larvae revealed that type of interactions is dose-dependent[J]. Aquatic Toxicology, 2017, 193:60-71
    Luo S J, Du H L, Kebede H, et al. Contamination status of major mycotoxins in agricultural product and food stuff in Europe[J]. Food Control, 2021, 127:108120
    Koletsi P, Schrama J W, Graat E A M, et al. The occurrence of mycotoxins in raw materials and fish feeds in Europe and the potential effects of deoxynivalenol (DON) on the health and growth of farmed fish species:A review[J]. Toxins, 2021, 13(6):403
    Jin J, Beekmann K, Ringø E, et al. Interaction between food-borne mycotoxins and gut microbiota:A review[J]. Food Control, 2021, 126:107998
    Biomin. World mycotoxin survey 2019[EB/OL].[2021-07-20]. https://www.biomin.net/downloads/2019-biomin-world-mycotoxin-survey-report/
    韩小敏,李凤琴,徐文静.食品中白僵菌素和恩镰孢菌素的污染情况及分析方法研究进展[J].中国食品卫生杂志, 2017, 29(4):508-513

    Han X M, Li F Q, Xu W J. Research progress on the contamination of beauvericin and enniatins and the development of analytical method in food[J]. Chinese Journal of Food Hygiene, 2017, 29(4):508-513(in Chinese)

    Supriya C, Girish B P, Reddy P S. Aflatoxin B1-induced reproductive toxicity in male rats:Possible mechanism of action[J]. International Journal of Toxicology, 2014, 33(3):155-161
    Kovács M, Tornyos G, Matics Z, et al. Effect of chronic T-2 toxin exposure in rabbit bucks, determination of the No Observed Adverse Effect Level (NOAEL)[J]. Animal Reproduction Science, 2013, 137(3-4):245-252
    周鸿媛,唐莉莉,路勇,等.脱氧雪腐镰刀菌烯醇、黄曲霉毒素B1和玉米赤霉烯酮对秀丽隐杆线虫的联合毒性研究[J].生态毒理学报, 2018, 13(3):112-121

    Zhou H Y, Tang L L, Lu Y, et al. Study on the combinatorial toxicity of deoxynivalenol, aflatoxin B1 and zearalenone on Caenorhabditis elegans [J]. Asian Journal of Ecotoxicology, 2018, 13(3):112-121(in Chinese)

    陈铃霞. ZEN与DON对雄性小鼠生殖系统的联合毒性及茶多酚的保护作用研究[D].合肥:安徽农业大学, 2019:34-39Chen L X. Combined toxicity of ZEN and DON to the reproductive system of male mice and the protective effect of tea polyphenols[D]. Hefei:Anhui Agricultural University, 2019:34

    -39(in Chinese)

    周鸿媛.脱氧雪腐镰刀菌烯醇(DON)的多代毒性及其联合毒性研究[D].无锡:江南大学, 2018:38-54Zhou H Y. Study on the multi-generational and combined toxic effects of deoxynivalenol (DON)[D]. Wuxi:Jiangnan University, 2018:38

    -54(in Chinese)

    Dalla Bona M, Lizzi F, Borgato A, et al. Increasing toxicity of enrofloxacin over four generations of Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2016, 132:397-402
    Shaw J L A, Judy J D, Kumar A, et al. Incorporating transgenerational epigenetic inheritance into ecological risk assessment frameworks[J]. Environmental Science&Technology, 2017, 51(17):9433-9445
    Owumi S E, Adedara I A, Akomolafe A P, et al. Gallic acid enhances reproductive function by modulating oxido-inflammatory and apoptosis mediators in rats exposed to aflatoxin-B1[J]. Experimental Biology and Medicine, 2020, 245(12):1016-1028
    Gao X, Sun L H, Zhang N Y, et al. Gestational zearalenone exposure causes reproductive and developmental toxicity in pregnant rats and female offspring[J]. Toxins, 2017, 9(1):E21
    Shen J K, Perveen A, Kaka N, et al. Maternal exposure to T-2 toxin induces changes in antioxidant system and testosterone synthesis in the testes of mice offspring[J]. Animals:An Open Access Journal from MDPI, 2019, 10(1):E74
    李雨哲.玉米赤霉烯酮对生殖靶器官细胞毒性机制研究[D].北京:中国农业大学, 2014:12-68Li Y Z. Investigation of the mechanism of the reproductive toxicity of zearalenone on cells from target organ[D]. Beijing:China Agriculture University, 2014:12

    -68(in Chinese)

    李洪蛟.丙酸睾酮对小鼠睾丸BNNF、NGF、NT-3和NT-4神经营养素表达的影响[D].长春:吉林大学, 2016:28-34Li H J. Effects of testosterone propionate on the expression of BDNF, NGF, NT-3 and NT-4

    neurotrophins in testes of mice[D]. Changchun:Jilin University, 2016:28-34(in Chinese)

    Zhou H Y, Wang J M, Ma L, et al. Oxidative DNA damage and multi-organ pathologies in male mice subchronically treated with aflatoxin B1[J]. Ecotoxicology and Environmental Safety, 2019, 186:109697
    Yang J H, Wang J H, Guo W B, et al. Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damage in BALB/c mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8):2289-2295
    Pang J, Zhou Q S, Sun X F, et al. Effect of low-dose zearalenone exposure on reproductive capacity of male mice[J]. Toxicology and Applied Pharmacology, 2017, 333:60-67
    Eze U A, Huntriss J D, Routledge M N, et al. In vitro effects of single and binary mixtures of regulated mycotoxins and persistent organochloride pesticides on steroid hormone production in MA-10 Leydig cell line[J]. Toxicology in Vitro, 2019, 60:272-280
    张新宇.睾丸生殖功能调控的初步研究[D].北京:北京协和医学院, 2013:43-46
    Khoury D E, Fayjaloun S, Nassar M, et al. Updates on the effect of mycotoxins on male reproductive efficiency in mammals[J]. Toxins, 2019, 11(9):515
    Men Y H, Zhao Y, Zhang P F, et al. Gestational exposure to low-dose zearalenone disrupting offspring spermatogenesis might be through epigenetic modifications[J]. Basic&Clinical Pharmacology&Toxicology, 2019, 125(4):382-393
    Jee Y, Noh E M, Cho E S, et al. Involvement of the Fas and Fas ligand in testicular germ cell apoptosis by zearalenone in rat[J]. Journal of Veterinary Science, 2010, 11(2):115-119
    Wang B J, Zheng W L, Feng N N, et al. The effects of autophagy and PI3K/AKT/m-TOR signaling pathway on the cell-cycle arrest of rats primary Sertoli cells induced by zearalenone[J]. Toxins, 2018, 10(10):E398
    Li Y Y, Huang P, Gao F Y, et al. Selenium ameliorates aflatoxin B1-induced uterine injury in female mice and necrosis of human endometrial microvascular endothelial cells[J]. Journal of Applied Toxicology, 2021, 41(5):799-810
    Wang Y, Zhang J, Wang Y L, et al. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice[J]. Toxicon:Official Journal of the International Society on Toxinology, 2018, 155:9-20
    Ahmad B, Shrivastava V K, Saleh R, et al. Protective effects of saffron against zearalenone-induced alterations in reproductive hormones in female mice ( Mus musculus )[J]. Clinical and Experimental Reproductive Medicine, 2018, 45(4):163-169
    Jia H Q, Jia C Q, An Q L, et al. Ochratoxin A exposure causes meiotic failure and oocyte deterioration in mice[J]. Theriogenology, 2020, 148:236-248
    Yang M, Wu X D, Zhang W, et al. Transcriptional analysis of deoxynivalenol-induced apoptosis of sow ovarian granulosa cell[J]. Reproduction in Domestic Animals, 2020, 55(2):217-228
    Zhang T Y, Kong L, Hao J X, et al. Effects of ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro [J]. Toxicology Letters, 2020, 330:167-175
    Silva T, de Brito D C C, de Sá N A R, et al. Equol:A microbiota metabolite able to alleviate the negative effects of zearalenone during in vitro culture of ovine preantral follicles[J]. Toxins, 2019, 11(11):652
    Shi D H, Zhou J C, Zhao L H, et al. Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts[J]. Journal of Animal Science and Biotechnology, 2018, 9:42
    尹亚南.金乌贼生殖系统结构特征和卵子发生的研究[D].上海:上海海洋大学, 2018:10Ying Y N. Studies on structure of reproductive system and oogenesis in Sepia esculenta Hoyle[D]. Shanghai:Shanghai Ocean University, 2018:10(in Chinese)
    Cheng L H, Qin Y S, Hu X, et al. Melatonin protects in vitro matured porcine oocytes from toxicity of aflatoxin B1[J]. Journal of Pineal Research, 2019, 66(4):e12543
    Mastrorocco A, Martino N A, Marzano G, et al. The mycotoxin beauvericin induces oocyte mitochondrial dysfunction and affects embryo development in the juvenile sheep[J]. Molecular Reproduction and Development, 2019, 86(10):1430-1443
    Schoevers E J, Santos R R, Roelen B A J. Alternariol disturbs oocyte maturation and preimplantation development[J]. Mycotoxin Research, 2020, 36(1):93-101
    Ye X Q, Andersen C, Zhao F. Effects of mycoestrogens on female reproduction[J]. Reproductive and Developmental Medicine, 2018, 2(1):52
    胡进.玉米赤霉烯酮对小鼠子宫内膜基质细胞的毒性作用及机制研究[D].南京:南京农业大学, 2016:52-58Hu J. Toxicity of zearalenone and its mechanism on mouse endometrial stromal cells[D]. Nanjing:Nanjing Agriculture University, 2016:52

    -58(in Chinese)

    李佳. Hippo信号通路在调节卵巢生殖干细胞功能和延缓卵巢衰老中的作用[D].南昌:南昌大学, 2016:34-35Li J. The roles of Hippo signaling pathway in regulating the function of ovarian germline stem cells and delaying ovarian aging[D]. Nanchang:Nanchang University, 2016:34

    -35(in Chinese)

    王兰.线粒体应激对卵子发育潜能及卵巢储备功能的影响[D].武汉:华中科技大学, 2017:42-49Wang L. Impact of mitochondrial stress on oocyte competency and ovarian reserve[D]. Wuhan:Huazhong University of Science and Technology, 2017:42

    -49(in Chinese)

    Shin K T, Guo J, Niu Y J, et al. The toxic effect of aflatoxin B1 on early porcine embryonic development[J]. Theriogenology, 2018, 118:157-163
    Huang C H, Wang F T, Chan W H. Enniatin B1 exerts embryotoxic effects on mouse blastocysts and induces oxidative stress and immunotoxicity during embryo development[J]. Environmental Toxicology, 2019, 34(1):48-59
    Wu T S, Lin Y T, Huang Y T, et al. Ochratoxin A triggered intracerebral hemorrhage in embryonic zebrafish:Involvement of microRNA-731 and prolactin receptor[J]. Chemosphere, 2020, 242:125143
    Zhang L P, Li L S, Xu J, et al. HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo development[J]. Reproductive Toxicology, 2019, 85:104-109
    Xu Y, Zhang K H, Sun M H, et al. Protective effects of melatonin against zearalenone toxicity on porcine embryos in vitro [J]. Frontiers in Pharmacology, 2019, 10:327
    Bondy G S, Coady L, Ross N, et al. A reproductive and developmental screening study of the fungal toxin ochratoxin A in Fischer rats[J]. Mycotoxin Research, 2018, 34(4):241-255
    Li R, Andersen C L, Hu L M, et al. Dietary exposure to mycotoxin zearalenone (ZEA) during post-implantation adversely affects placental development in mice[J]. Reproductive Toxicology, 2019, 85:42-50
    Zhao X X, Wang D X, Fields P G, et al. Effect of aflatoxin B1 on development, survival and fecundity of Ahasverus advena (Waltl)[J]. Journal of Stored Products Research, 2018, 77:225-230
    Yang X, Liu P L, Cui Y L, et al. Review of the reproductive toxicity of T-2 toxin[J]. Journal of Agricultural and Food Chemistry, 2020, 68(3):727-734
    Gao X, Xiao Z H, Li C, et al. Prenatal exposure to zearalenone disrupts reproductive potential and development via hormone-related genes in male rats[J]. Food and Chemical Toxicology, 2018, 116:11-19
    Zhou Y W, Zhang D, Sun D H, et al. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse[J]. Comparative Biochemistry and Physiology Toxicology&Pharmacology, 2020, 234:108766
    史雅凝.鸡蛋膜蛋白酶解物的制备及其对肠道氧化应激和炎症的影响[D].无锡:江南大学, 2015:26-34Shi Y N. Preparation of soluble eggshell membrane hydrolysate and its anti-oxidaitve stress and anti-inflammatory effects[D]. Wuxi:Jiangnan University, 2015:26

    -34(in Chinese)

    Wu J, Yang C L, Liu J, et al. Betulinic acid attenuates T-2-toxin-induced testis oxidative damage through regulation of the JAK2/STAT3 signaling pathway in mice[J]. Biomolecules, 2019, 9(12):E787
    Huang C H, Wang F T, Chan W H. Prevention of ochratoxin A-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin[J]. Environmental Toxicology, 2019, 34(5):573-584
    Szabó B, Kocsis R, Mézes M. Reproduction inhibiting effects of deoxynivalenol or T-2 toxin contaminated maize on Folsomia candida (Collembola)[J]. Acta Zoologica Academiae Scientiarum Hungaricae, 2019, 65(4):323-334
    Xu Y, Zhang K H, Sun M H, et al. Protective effects of melatonin against zearalenone toxicity on porcine embryos in vitro [J]. Frontiers in Pharmacology, 2019, 10:327
    Huang W Y, Cao Z, Zhang J, et al. Aflatoxin B1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis[J]. Environmental Pollution, 2019, 255(Pt 2):113317
    Cao Z, Shao B, Xu F B, et al. Protective effect of selenium on aflatoxin B1-induced testicular toxicity in mice[J]. Biological Trace Element Research, 2017, 180(2):233-238
    Huang W Y, Cao Z, Yao Q C, et al. Mitochondrial damage are involved in aflatoxin B1-induced testicular damage and spermatogenesis disorder in mice[J]. The Science of the Total Environment, 2020, 701:135077
    Omur A D, Yildirim B, Saglam Y S, et al. Activity of resveratrol on the influence of aflatoxin B1 on the testes of Sprague Dawley rats[J]. Polish Journal of Veterinary Sciences, 2019, 22(2):313-320
    Huang W Y, Liu M L, Xiao B N, et al. Aflatoxin B1 disrupts blood-testis barrier integrity by reducing junction protein and promoting apoptosis in mice testes[J]. Food and Chemical Toxicology, 2021, 148:111972
    Zamir-Nasta T, Pazhouhi M, Ghanbari A, et al. Expression of cyclin D1, p21, and estrogen receptor alpha in aflatoxin G1-induced disturbance in testicular tissue of albino mice[J]. Research in Pharmaceutical Sciences, 2021, 16(2):182-192
    del Fabbro L, Jesse C R, de Gomes M G, et al. The flavonoid chrysin protects against zearalenone induced reproductive toxicity in male mice[J]. Toxicon, 2019, 165:13-21
    Long M, Yang S H, Zhang Y, et al. Proanthocyanidin protects against acute zearalenone-induced testicular oxidative damage in male mice[J]. Environmental Science and Pollution Research International, 2017, 24(1):938-946
    Long M, Yang S H, Wang Y, et al. The protective effect of selenium on chronic zearalenone-induced reproductive system damage in male mice[J]. Molecules, 2016, 21(12):E1687
    杨振东.模式生物秀丽隐杆线虫评价真菌毒素毒性毒理机制的研究[D].无锡:江南大学, 2016:61-69Yang Z D. Study of mycotoxins toxic effects and mechanisms using a model organism nematode Caenorhabdites elegans [D]. Wuxi:Jiangnan University, 2016:61

    -69(in Chinese)

    Zhu Y F, Wang H, Wang J P, et al. Zearalenone induces apoptosis and cytoprotective autophagy in chicken granulosa cells by PI3K-AKT-mTOR and MAPK signaling pathways[J]. Toxins, 2021, 13(3):199
    Park H, Park H S, Lim W, et al. Ochratoxin A suppresses proliferation of Sertoli and Leydig cells in mice[J]. Medical Mycology, 2020, 58(1):71-82
    Akpinar H A, Kahraman H, Yaman I. Ochratoxin A sequentially activates autophagy and the ubiquitin-proteasome system[J]. Toxins, 2019, 11(11):615
    Zhang T Y, Kong L, Hao J X, et al. Effects of ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro [J]. Toxicology Letters, 2020, 330:167-175
    Zhang T Y, Sun X F, Li L, et al. Ochratoxin A exposure impairs porcine granulosa cell growth via the PI3K/AKT signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(9):2679-2690
    Zhang T Y, Wu R Y, Zhao Y, et al. Ochratoxin A exposure decreased sperm motility via the AMPK and PTEN signaling pathways[J]. Toxicology and Applied Pharmacology, 2018, 340:49-57
    Wu T S, Cheng Y C, Chen P J, et al. Exposure to aflatoxin B1 interferes with locomotion and neural development in zebrafish embryos and larvae[J]. Chemosphere, 2019, 217:905-913
    Karaman E F, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α -zearalenol[J]. Toxicology Letters, 2020, 326:52-60
    Zhu C C, Hou Y J, Han J, et al. Effect of mycotoxin-containing diets on epigenetic modifications of mouse oocytes by fluorescence microscopy analysis[J]. Microscopy and Microanalysis, 2014, 20(4):1158-1166
    Song Y, Yang L. Transgenerational impaired spermatogenesis with sperm H19 and Gtl2 hypomethylation induced by the endocrine disruptor p,p'-DDE[J]. Toxicology Letters, 2018, 297:34-41
  • 加载中
计量
  • 文章访问数:  2457
  • HTML全文浏览数:  2457
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-07-20
任思瑞, 周鸿媛, 刘榕, 郭婷, 张宇昊, 马良. 粮食真菌毒素的生殖、发育与遗传毒性:现状与展望[J]. 生态毒理学报, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
引用本文: 任思瑞, 周鸿媛, 刘榕, 郭婷, 张宇昊, 马良. 粮食真菌毒素的生殖、发育与遗传毒性:现状与展望[J]. 生态毒理学报, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
Ren Sirui, Zhou Hongyuan, Liu Rong, Guo Ting, Zhang Yuhao, Ma Liang. Reproductive, Developmental and Genetic Toxicities of Grain Mycotoxins: Current Status and Prospects[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004
Citation: Ren Sirui, Zhou Hongyuan, Liu Rong, Guo Ting, Zhang Yuhao, Ma Liang. Reproductive, Developmental and Genetic Toxicities of Grain Mycotoxins: Current Status and Prospects[J]. Asian Journal of Ecotoxicology, 2022, 17(1): 102-115. doi: 10.7524/AJE.1673-5897.20210720004

粮食真菌毒素的生殖、发育与遗传毒性:现状与展望

    通讯作者: 周鸿媛, E-mail: zhouhy@swu.edu.cn ;  马良, E-mail: zhyhml@163.com
    作者简介: 任思瑞(1997-),女,硕士研究生,研究方向为食品安全评价与检测,E-mail:18234494373@163.com
  • 1. 西南大学食品科学学院, 重庆 400715;
  • 2. 西南大学生物学研究中心, 重庆 400715
基金项目:

国家自然科学基金资助项目(32001810)

重庆市基础研究与前沿探索专项项目(cstc2019jcyj-msxmX0278)

国家自然科学基金资助项目(32072137)

中央高校基本科研业务费面上项目(XDJK2020C052)

摘要: 粮食及其制品会受到多种真菌毒素的污染。粮食真菌毒素现已被证实具有多种毒性作用,如细胞毒性、发育毒性、生殖毒性、免疫毒性和遗传毒性等,严重危害人和动物健康,甚至还会对间接或未接触毒素的子代产生不良影响,但目前有关继代毒理学数据极为缺乏。本文主要阐述了粮食中常见真菌毒素对亲本世代及其子代生殖系统/能力和生长发育的影响,简述了不同毒素诱导生殖发育毒性的作用机理并提出展望,旨在全面了解粮食真菌毒素的生殖发育及遗传毒性作用,为进一步开展粮食真菌毒素的健康风险评估,合理制定相关限量标准与法规,指导公共卫生健康并开展主动防治与干预提供重要理论依据。

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回