嘧菌酯对典型农田周边水生生态风险评估
Risk Assessment of Azoxystrobin to Aquatic Ecological Systems around Farmland in China
-
摘要: 本文评价了嘧菌酯的生物富集风险,并利用Top-Rice和China-Psem模型,针对目前中国在水稻、小麦、柑橘和马铃薯4种主要作物上登记的所有嘧菌酯单剂产品进行水生态风险评估。结果显示,我国国内在这4种作物上所登记的嘧菌酯单剂共计6种剂型,80种(截至2021年5月),其中悬浮剂占比最大,为73.75%,其次为水分散粒剂,占18.75%,可湿性粉剂、超低容量液剂、悬浮种衣剂和颗粒剂分别占3.75%、1.25%、1.25%和1.25%。根据不同剂型嘧菌酯产品的施用方法,对其在4种作物上使用进行暴露分析,结果显示,不同剂型嘧菌酯在水稻、小麦、柑橘和马铃薯上施用后,其预测环境浓度(predicted environmental concentration,PEC)范围分别为12.03~300.04、0.03~31.33、4.40~50.51和0.44~27.07 μg·L-1。风险表征结果显示,嘧菌酯在4种作物上使用后,针对不同分组,风险商值(risk quotient,RQ)>1的分组分别占总模拟组的82.81%、20.24%、55.56%和28.47%,但嘧菌酯生物富集风险可接受。总之,目前在中国4种作物上登记使用的嘧菌酯产品对水生生态系统风险不可忽视,但因本研究针对其施药方法模式的分析偏保守,使得评价结果具有一定保守性。Abstract: To clarify the potential risks of azoxystrobin to aquatic ecosystems, the bioaccumulation risk of azoxystrobin was evaluated. The risk assessment of aquatic ecosystems exposed to different azoxystrobin products currently registered as pesticides on rice, wheat, citrus, and potato in China were conducted via the Top-Rice model and China-Psem model. A total of 80 single agent products had been registered on these four crops till May 2021. These products were divided into six formulations. The suspension concentrate (SC) accounted for the largest portion at 73.75%, followed by the water dispersible granule (WDG) accounting for 18.75%. The wettable powders (WP), ultralow volume concentrate (UL), flowable concentrate for seed coating (FS) and granules (GR) contributed 3.75%,1.25%, 1.25% and 1.25%, respectively. The results showed that applying different formulations of azoxystrobin on rice, wheat, citrus and potato, the predicted environmental concentration (PEC) of azoxystrobin ranged at 12.03~300.04 μg·L-1, 0.03~31.33 μg·L-1, 4.40~50.51 μg·L-1, and 0.44~27.07 μg·L-1 respectively. The risk characterization showed that after azoxystrobin was used on rice, wheat, citrus and potatoes, the groups with the RQ values greater than 1 accounted for 82.81%, 20.24%, 55.56% and 28.47% of the total simulation groups. In short, the results showed that the bioaccumulation risk of azoxystrobin was acceptable. However, the risk of azoxystrobin products can not be ignored for aquatic ecosystems.
-
Key words:
- azoxystrobin /
- major crops /
- aquatic ecosystem /
- risk assessment
-
Balba H. Review of strobilurin fungicide chemicals[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42(4):441-451 王丽, 石延霞, 李宝聚, 等. 甲氧基丙烯酸酯类杀菌剂研究进展[J]. 农药科学与管理, 2008, 29(9):24-27 Wang L, Shi Y X, Li B J, et al. The progresses of research on strobilurin fungicides[J]. Pesticide Science and Administration, 2008, 29(9):24-27(in Chinese)
张国生. 甲氧基丙烯酸酯类杀菌剂的应用、开发现状及展望[J]. 农药科学与管理, 2003, 24(12):30-34 Zhang G S. Current status of application, development and prospect of strobin fungicides[J]. Pesticide Science and Administration, 2003, 24(12):30-34(in Chinese)
Phillips McDougalli-Agriservice. Products section-2015 market[R]. Phillips McDougall-AgriService, 2016 严明, 柏亚罗. 甲氧基丙烯酸酯类等四大类杀菌剂市场概况及前景展望[J]. 现代农药, 2016, 15(6):1-8 , 11 Yan M, Bai Y L. Market overview and prospect outlook on four fungicide sectors including methoxyacrylates[J]. Modern Agrochemicals, 2016, 15(6):1-8, 11(in Chinese)
华乃震. 农药水分散粒剂的开发和进展[J]. 现代农药, 2006, 5(2):32-37 Hua N Z. Development and advance of pesticides water dispersible granule formulations[J]. Modern Agrochemicals, 2006, 5(2):32-37(in Chinese)
陈飞. 几种聚羧酸盐分散剂在25%嘧菌酯悬浮剂中的应用[J]. 安徽化工, 2014, 40(4):72-74 Chen F. Application of polycarboxylate dispersant in 25% azoxystrobin SC[J]. Anhui Chemical Industry, 2014, 40(4):72-74(in Chinese)
Rabiet M, Margoum C, Gouy V, et al. Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment-Effect of sampling frequency[J]. Environmental Pollution, 2010, 158(3):737-748 Filho A M, dos Santos F N, Pereira P A D P. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples[J]. Microchemical Journal, 2010, 96(1):139-145 Jørgensen L F, Kjær J, Olsen P, et al. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites[J]. Chemosphere, 2012, 88(5):554-562 Chau H T C, Kadokami K, Duong H T, et al. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam[J]. Environmental Science and Pollution Research International, 2018, 25(8):7147-7156 Liess M, Von Der Ohe P C. Analyzing effects of pesticides on invertebrate communities in streams[J]. Environmental Toxicology and Chemistry, 2005, 24(4):954-965 Wightwick A M, Bui A D, Zhang P, et al. Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia[J]. Archives of Environmental Contamination and Toxicology, 2012, 62(3):380-390 Mimbs W H 4th, Cusaac J P W, Smith L M, et al. Occurrence of current-use fungicides and bifenthrin in rainwater basin wetlands[J]. Chemosphere, 2016, 159:275-281 Smalling K L, Kuivila K M, Orlando J L, et al. Environmental fate of fungicides and other current-use pesticides in a central California estuary[J]. Marine Pollution Bulletin, 2013, 73(1):144-153 李慧, 曹芳杰, 邱立红. 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展[J]. 农药学学报, 2019, 21(S1):831-840 Li H, Cao F J, Qiu L H. Research progress of the ecotoxicology of strobilurins on aquatic organisms[J]. Chinese Journal of Pesticide Science, 2019, 21(S1):831-840(in Chinese)
Bartlett D W, Clough J M, Godwin J R, et al. The strobilurin fungicides[J]. Pest Management Science, 2002, 58(7):649-662 Zafar M I, Belgers J D, van Wijngaarden R P, et al. Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms[J]. Ecotoxicology, 2012, 21(4):1024-1038 Du B B, Zhang Z Y, Liu W Y, et al. Acute toxicity of the fungicide azoxystrobin on the diatom Phaeodactylum tricornutum[J]. Ecotoxicology and Environmental Safety, 2019, 168:72-79 Garanzini D S, Menone M L. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(2):146-151 Bony S, Gillet C, Bouchez A, et al. Genotoxic pressure of vineyard pesticides in fish:Field and mesocosm surveys[J]. Aquatic Toxicology, 2008, 89(3):197-203 Han Y N, Zhu L S, Wang J H, et al. Integrated assessment of oxidative stress and DNA damage in earthworms (Eisenia fetida) exposed to azoxystrobin[J]. Ecotoxicology and Environmental Safety, 2014, 107:214-219 杨淞霖, 尹晶, 王会利, 等. 3种农药对大型溞的急性毒性比较[J]. 生态毒理学报, 2017, 12(2):238-242 Yang S L, Yin J, Wang H L, et al. The toxicity of three pesticides of mefenoxam, fludioxonil, azoxystrobin and their compounds to Daphnia magna Straus[J]. Asian Journal of Ecotoxicology, 2017, 12(2):238-242(in Chinese)
贾伟. 4种甲氧基丙烯酸酯类杀菌剂对赤眼蜂和斑马鱼的影响[D]. 北京:中国农业科学院, 2016:92 Jia W. Influence of four kinds of strobilurin fungicides on zebrafish and Trichogramma[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016:92(in Chinese) 穆希岩, 黄瑛, 罗建波, 等. 通过多阶段暴露试验评价嘧菌酯对斑马鱼的急性毒性与发育毒性[J]. 环境科学学报, 2017, 37(3):1122-1132 Mu X Y, Huang Y, Luo J B, et al. Evaluation of acute and developmental toxicity of azoxystrobin on zebrafish via multiple life stage assays[J]. Acta Scientiae Circumstantiae, 2017, 37(3):1122-1132(in Chinese)
中国农业农村部农药检定所. 农药快讯信息网[EB/OL]. (2021-06-01)[2021-10-13]. http://www.agroinfo.com.cn/news_detail_9563.html 中华人民共和国农业部. 农药登记环境风险评估指南第2部分:水生生态系统:NY/T 2882.2-2016[S]. 北京:中国农业出版社, 2016 Veith G D, DeFoe D L, Bergstedt B V. Measuring and estimating the bioconcentration factor of chemicals in fish[J]. Journal of the Fish Research Board of Canada, 1979, 36(9):1040-1048 中国农业农村部农药检定所. 中国农药信息网[EB/OL]. (2021-06-01)[2021-10-13]. http://www.icama.org.cn 中国农业农村部农药检定所. TOP-RICE模型操作手册[R]. 北京:中国农业农村部农药检定所, 2014:2-6 陈诗卉, 姜锦林, 张焕朝, 等. 毒死蜱在我国水稻上登记现状及水生态风险评估[J]. 中国环境科学, 2020, 40(8):3585-3594 Chen S H, Jiang J L, Zhang H C, et al. Registration status of chlorpyrifos products for use on rice and its risk assessment for aquatic ecosystem in China[J]. China Environmental Science, 2020, 40(8):3585-3594(in Chinese)
中国农业农村部农药检定所. 农药地表水暴露模型[R]. 北京:中国农业农村部农药检定所, 2020:1-11 University of Hertfordshire. PAN Pesticide Database[EB/OL]. (2021-06-01)[2021-10-13]. https://www.pesticideinfo.org/chemical/PRI1372 University of Hertfordshire. Pesticide Properties Database[EB/OL]. (2021-04-27)[2021-10-13]. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/54.htm#0 United States Environmental Protection Agency (US EPA). Ecotox knowledge base[EB/OL]. (2021-06-15)[2021-10-13]. https://cfpub.epa.gov/ecotox/search.cfm European Food Safety Authority (EFSA). Public consultation on the active substance azoxystrobin[EB/OL].(2009-08-07)[2021-10-13].https://www.efsa.europa.eu/sites/default/files/consultation/consultation/327.zip 张国祥, 周军英, 姜锦林, 等. 嘧菌酯在稻田使用后对水生生物的影响[J]. 农药, 2013, 52(10):747-749 Zhang G X, Zhou J Y, Jiang J L, et al. Impact of azoxystrobin on aquatic organisms in the pond nearby paddy field[J]. Agrochemicals, 2013, 52(10):747-749(in Chinese)
张国祥. 稻田使用农药水生生态风险评价技术建立与应用研究[D]. 南京:南京信息工程大学, 2014:74-75 Zhang G X. Development and case study of aquatic ecological risk assessment technique for using pesticides in paddy fields[D]. Nanjing:Nanjing University of Information Science & Technology, 2014:74 -75(in Chinese)
毛连纲, 周艳明, 张兰, 等. 基于TOP-RICE模型嘧菌酯·噻呋酰胺4%展膜油剂稻田水溢出对水生生态系统风险评估研究[J]. 生态毒理学报, 2017, 12(4):153-163 Mao L G, Zhou Y M, Zhang L, et al. Risk assessment of azoxystrobin · thifluzamide 4% spreading oil water overflow in rice paddies on aquatic ecosystem based on TOP-RICE model[J]. Asian Journal of Ecotoxicology, 2017, 12(4):153-163(in Chinese)
European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin[J]. EFSA Journal, 2010, 8(4):1-110
计量
- 文章访问数: 1753
- HTML全文浏览数: 1753
- PDF下载数: 39
- 施引文献: 0