微(纳米)塑料对海洋渔业水域中重要饵料藻类的生态风险评估研究
Ecological Risk Assessment of Micro(nano)plastics to Important Bait Algae in Marine Fishery Waters
-
摘要: 微(纳米)塑料(micro(nano)plastics, MNPs)污染已成为水环境中的热点问题,特别是对于有“海洋牧场”之称的海洋渔业水域,由于陆源性塑料垃圾排放、塑料渔具的大量使用以及海上航运等原因,MNPs污染日益严重。饵料藻类作为渔业水域中重要的初级生产者,是维持生态系统稳定的第一道防线,也是污染物在水生食物链中传递的起点,并且响应污染物的毒性效应较为敏感。上述特征使饵料藻类成为开展渔业水域中污染物生态风险评估的理想生物。为评估MNPs对渔业水域中重要饵料藻类的生态风险,本研究通过文献检索分析了其中4门9科12种常见饵料藻类的毒理学研究数据。进一步利用GraphPad Prism 8.0软件计算MNPs对上述饵料藻类的半数有效浓度(median effect concentration, EC50),并运用Rurrlioz软件绘制物种敏感性分布(species sensitivity distribution, SSD)曲线。通过SSD曲线预测了不同环境浓度MNPs对饵料藻类的潜在影响比例(potential affected fractions, PAF),继而对全球13处渔业水域MNPs的生态风险进行评估。结果发现墨西哥湾MNPs的PAF值超过50%;另有7处渔业水域MNPs的PAF值介于5%和20%之间。基于上述结果并考虑到当前海洋塑料垃圾数量有可能被低估,本研究认为未来需要加强对渔业水域中MNPs生态风险的关注。同时,本研究还揭示了当前研究的局限性并对未来渔业水域中MNPs污染的生态风险评估研究提出了几点建议。Abstract: Micro(nano)plastics (MNPs) pollution has become a hot issue in the aquatic environment, especially in the marine fishery waters known as “marine pasture”. Due to discharge of land-derived plastic debris, massive use of plastic fishing gear and sea transportation, MNPs pollution is becoming more serious. As an important primary producer in fishery waters, bait alga is the first line of defense to maintain the stability of aquatic ecosystem, and the starting point of pollutant transmission within the aquatic food chain, and its response is more sensitive to pollutants. Because of these characteristics, the bait alga becomes as a potential organism for the ecological risk assessment of pollutants in fishery waters. In order to evaluate the ecological risks of MNPs on important bait algae in fishery waters, the toxicological research data of 12 species of common bait algae from 9 families in 4 phyla were analyzed through a literature search. The GraphPad Prism 8.0 software was used to calculate the median effective concentration (EC50) of the bait algae, and the Rurrlioz software was used to obtain a species sensitivity distribution (SSD) curve. Furthermore, the SSD curve was applied to predict the potential affected fractions (PAF) of MNPs in different environmental concentrations on the bait algae, and then the ecological risks of MNPs in 13 fishery waters around the world were evaluated. The results showed that the value of PAF in the Gulf of Mexico far exceeded 50%. The values of PAF in other 7 fishery waters were between 5% and 20%. Therefore, the current amount of marine plastic waste may be underestimated according to the present data, and it is urgent to continue the ecological risk assessment of MNPs in fishery waters. Meanwhile, the present study also revealed the limitations of current researches and provided several suggestions on the future research of MNPs in fishery waters and ecological risk assessment.
-
-
Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838 da Costa J P, Santos P S M, Duarte A C, et al. (Nano)plastics in the environment-Sources, fates and effects[J]. The Science of the Total Environment, 2016, 566-567:15-26 Ter Halle A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris[J]. Environmental Science & Technology, 2016, 50(11):5668-5675 Ter Halle A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic subtropical gyre[J]. Environmental Science & Technology, 2017, 51(23):13689-13697 Cole M, Lindeque P, Fileman E, et al. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science & Technology, 2015, 49(2):1130-1137 Jemec A, Horvat P, Kunej U, et al. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna[J]. Environmental Pollution, 2016, 219:201-209 Enyoh C E, Verla A W, Verla E N, et al. Airborne microplastics:A review study on method for analysis, occurrence, movement and risks[J]. Environmental Monitoring and Assessment, 2019, 191(11):668 李道季. 海洋微塑料研究焦点及存在的科学认知误区[J]. 科技导报, 2020, 38(14):46-53 Li D J. Focus and scientific cognition misconceptions on marine microplastics studies[J]. Science & Technology Review, 2020, 38(14):46-53(in Chinese)
Mathalon A, Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia[J]. Marine Pollution Bulletin, 2014, 81(1):69-79 Alexander P, Andrei P, Mikhail M, et al. Eco-legal and economic aspects of developing Malomorsky fishing area of Lake Baikal[J]. Aquaculture and Fisheries, 2021(5):530-534 夏斌, 杜雨珊, 赵信国, 等. 微塑料在海洋渔业水域中的污染现状及其生物效应研究进展[J]. 渔业科学进展, 2019, 40(3):178-190 Xia B, Du Y S, Zhao X G, et al. Research progress on microplastics pollution in marine fishery water and their biological effects[J]. Progress in Fishery Sciences, 2019, 40(3):178-190(in Chinese)
Hidalgo-Ruz V, Gutow L, Thompson R C, et al. Microplastics in the marine environment:A review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6):3060-3075 Andrady A. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8):1596-1605 Chen M L, Jin M, Tao P R, et al. Assessment of microplastics derived from mariculture in Xiangshan Bay, China[J]. Environmental Pollution, 2018, 242(Pt B):1146-1156 Ma J L, Niu X J, Zhang D Q, et al. High levels of microplastic pollution in aquaculture water of fish ponds in the Pearl River Estuary of Guangzhou, China[J]. The Science of the Total Environment, 2020, 744:140679 Vázquez-Rowe I, Ita-Nagy D, Kahhat R. Microplastics in fisheries and aquaculture:Implications to food sustainability and safety[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29:100464 Wang Q, Zhu X P, Hou C W, et al. Microplastic uptake in commercial fishes from the Bohai Sea, China[J]. Chemosphere, 2021, 263:127962 Xue B M, Zhang L L, Li R L, et al. Underestimated microplastic pollution derived from fishery activities and "hidden" in deep sediment[J]. Environmental Science & Technology, 2020, 54(4):2210-2217 Zhang F, Xu J Y, Zhu L X, et al. Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea[J]. Journal of Hazardous Materials, 2021, 419:126456 Rahman M M, Nur N, Mahmud-Al-Hasan M, et al. Effects of light and artificial fish shelter (PVC pipe) on some phenotypic traits of stinging catfish (Heteropneustes fossilis Bloch, 1794)[J]. Aquaculture Research, 2020, 51(1):124-134 Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 2019, 650:671-678 Law K L, Thompson R C. Oceans. microplastics in the seas[J]. Science, 2014, 345(6193):144-145 Kazmiruk T N, Kazmiruk V D, Bendell L I. Abundance and distribution of microplastics within surface sediments of a key shellfish growing region of Canada[J]. PLoS One, 2018, 13(5):e0196005 Setälä O. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83 Zhang F, Wang X, Xu J, et al. Food-web transfer of microplastics between wild caught fish and crustaceans in East China Sea[J]. Marine Pollution Bulletin, 2019, 146:173-182 Mu J L, Zhang S F, Qu L, et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea[J]. Marine Pollution Bulletin, 2019, 143:58-65 胡习邦, 曾东, 王俊能, 等. 应用物种敏感性分布评估苯胺的水生生态风险[J]. 生态环境学报, 2016, 25(3):471-476 Hu X B, Zeng D, Wang J N, et al. Assessing aquatic ecological risk of aniline by species sensitivity distributions[J]. Ecology and Environmental Sciences, 2016, 25(3):471-476(in Chinese)
He W, Kong X Z, Qin N, et al. Combining species sensitivity distribution (SSD) model and thermodynamic index (exergy) for system-level ecological risk assessment of contaminates in aquatic ecosystems[J]. Environment International, 2019, 133(Pt B):105275 Kim D, Kim L, Kim D, et al. Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems[J]. Environmental Geochemistry and Health, 2022, 44(8):2435-2449 Flores N Y, Collas F P L, Mehler K, et al. Assessing habitat suitability for native and alien freshwater mussels in the river Waal (the Netherlands), using hydroacoustics and species sensitivity distributions[J]. Environmental Modeling & Assessment, 2022, 27(1):187-204 Razak M R, Aris A Z, Zakaria N A C, et al. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia[J]. Ecotoxicology and Environmental Safety, 2021, 211:111905 《环境科学大辞典》编辑委员会. 环境科学大辞典[M]. 北京:中国环境科学出版社, 1991:10 Raimondo S, Vivian D N, Delos C, et al. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment[J]. Environmental Toxicology and Chemistry, 2008, 27(12):2599-2607 Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. The Science of the Total Environment, 2011, 409(18):3309-3324 Granum E, Raven J A, Leegood R C. How do marine diatoms fix 10 billion tonnes of inorganic carbon per year?[J]. Canadian Journal of Botany, 2005, 83(7):898-908 Zhang C, Chen X H, Wang J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220:1282-1288 赵东会, 赵丽达, 尤宏, 等. 耐高温球等鞭金藻(Isochrysis galbana)藻种的选育与饵料特性初步分析[J]. 海洋与湖沼, 2021, 52(1):206-212 Zhao D H, Zhao L D, You H, et al. Breeding and feeding characteristics of high-temperature-resistant strains of Isochrysis galbana[J]. Oceanologia et Limnologia Sinica, 2021, 52(1):206-212(in Chinese)
Chen Y X, Ling Y, Li X Y, et al. Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda[J]. Journal of Hazardous Materials, 2020, 399:123092 于童, 白喜云, 解晓晶, 等. 应用GraphPad Prism 5.0 软件计算药物的EC50[J]. 药学进展, 2012(4):180-183 Yu T, Bai X Y, Xie X J, et al. Calculation of in vitro EC50 van Straalen N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc[J]. Environmental Toxicology and Pharmacology, 2002, 11(3-4):167-172 陈波宇, 郑斯瑞, 牛希成, 等. 物种敏感度分布及其在生态毒理学中的应用[J]. 生态毒理学报, 2010, 5(4):491-497 Chen B Y, Zheng S R, Niu X C, et al. Species sensitivity distribution and its application in ecotoxicology[J]. Asian Journal of Ecotoxicology, 2010, 5(4):491-497(in Chinese)
Besseling E, Redondo-Hasselerharm P, Foekema E M, et al. Quantifying ecological risks of aquatic micro- and nanoplastic[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(1):32-80 陈锦灿, 方超, 郑榕辉, 等. 应用物种敏感性分布评估微(纳米)塑料对水生生物的生态风险[J]. 生态毒理学报, 2020, 15(1):242-255 Chen J C, Fang C, Zheng R H, et al. Assessing ecological risks of micro(nano)plastics to aquatic organisms using species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2020, 15(1):242-255(in Chinese)
Enders K, Lenz R, Stedmon C A, et al. Abundance, size and polymer composition of marine microplastics ≥ 10μm in the Atlantic Ocean and their modelled vertical distribution[J]. Marine Pollution Bulletin, 2015, 100(1):70-81 Venâncio C, Ferreira I, Martins M A, et al. The effects of nanoplastics on marine plankton:A case study with polymethylmethacrylate[J]. Ecotoxicology and Environmental Safety, 2019, 184:109632 Davarpanah E, Guilhermino L. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii[J]. Estuarine, Coastal and Shelf Science, 2015, 167:269-275 Gambardella C, Morgana S, Bramini M, et al. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels[J]. Marine Environmental Research, 2018, 141:313-321 Bergami E, Pugnalini S, Vannuccini M L, et al. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana[J]. Aquatic Toxicology, 2017, 189:159-169 Casado M P, Macken A, Byrne H J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery[J]. Environment International, 2013, 51:97-105 Tunali M, Uzoefuna E N, Tunali M M, et al. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris[J]. Science of the Total Environment, 2020, 743:140479 冯炘, 秦于杰, 解玉红. 微塑料对念珠藻的影响——以聚苯乙烯为例[J]. 价值工程, 2020, 39(12):263-266 Feng X, Qin Y J, Xie Y H. Effects of microplastics on freshwater organisms:A case study of polystyrene[J]. Value Engineering, 2020, 39(12):263-266(in Chinese)
Wang S, Wang Y, Liang Y, et al. The interactions between microplastic polyvinyl chloride and marine diatoms:Physiological, morphological, and growth effects[J]. Ecotoxicology and Environmental Safety, 2020, 203:111000 Zhu X L, Zhao W H, Chen X H, et al. Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure[J]. Marine Environmental Research, 2020, 158:105005 Jambeck J R, Geyer R, Wilcox C, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771 中华人民共和国生态环境部. 2020年中国海洋生态环境状况公报[R]. 北京:中华人民共和国生态环境部, 2021:34-36 Shiu R F, Gong G C, Fang M D, et al. Marine microplastics in the surface waters of "pristine" Kuroshio[J]. Marine Pollution Bulletin, 2021, 172:112808 Wang T, Hu M H, Song L L, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China[J]. Environmental Pollution, 2020, 266(Pt 2):115137 Roscher L, Fehres A, Reisel L, et al. Microplastic pollution in the Weser Estuary and the German North Sea[J]. Environmental Pollution, 2021, 288:117681 Eryaşar A R, Gedik K, Şahin A, et al. Characteristics and temporal trends of microplastics in the coastal area in the Southern Black Sea over the past decade[J]. Marine Pollution Bulletin, 2021, 173(Pt A):112993 Liu Y D, Li Z Z, Jalón-Rojas I, et al. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in Northern China[J]. Ecotoxicology and Environmental Safety, 2020, 204:111067 Xia B, Sui Q, Sun X M, et al. Microplastic pollution in surface seawater of Sanggou Bay, China:Occurrence, source and inventory[J]. Marine Pollution Bulletin, 2021, 162:111899 Song Y K, Hong S H, Eo S, et al. Horizontal and vertical distribution of microplastics in Korean coastal waters[J]. Environmental Science & Technology, 2018, 52(21):12188-12197 Zhang D D, Gui Y Z, Zhou H H, et al. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma'an Archipelago, Shengsi, China[J]. Science of the Total Environment, 2020, 703:134768 Gurjar U R, Xavier K A M, Shukla S P, et al. Microplastic pollution in coastal ecosystem off Mumbai coast, India[J]. Chemosphere, 2022, 288:132484 Zhu J M, Zhang Q, Li Y P, et al. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China[J]. The Science of the Total Environment, 2019, 658:62-68 Qu X Y, Su L, Li H X, et al. Assessing the relationship between the abundance and properties of microplastics in water and in mussels[J]. The Science of the Total Environment, 2018, 621:679-686 Shruti V C, Pérez-Guevara F, Kutralam-Muniasamy G, et al. The current state of microplastic pollution in the world's largest gulf and its future directions[J]. Environmental Pollution, 2021, 291:118142 Caldwell D J, Mastrocco F, Hutchinson T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17 alpha-ethinyl estradiol[J]. Environmental Science & Technology, 2008, 42(19):7046-7054 雷炳莉, 黄圣彪, 王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(S1):350-358 Lei B L, Huang S B, Wang Z J. Theories and methods of ecological risk assessment[J]. Progress in Chemistry, 2009, 21(S1):350-358(in Chinese)
Belanger S, Barron M, Craig P, et al. Future needs and recommendations in the development of species sensitivity distributions:Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures[J]. Integrated Environmental Assessment and Management, 2017, 13(4):664-674 United States Environmental Protection Agency (US EPA). Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses[S]. Washington DC:Office of Research and Development Environmental Research Laboratories, 2010 Connon R E, Geist J, Werner I. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment[J]. Sensors, 2012, 12(9):12741-12771 Wheeler J R, Grist E P, Leung K M, et al. Species sensitivity distributions:Data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1-12):192-202 Selck H, Riemann B, Christoffersen K, et al. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field[J]. Ecotoxicology and Environmental Safety, 2002, 52(2):97-112 Forbes T L, Forbes V E. A critique of the use of distribution-based extrapolation models in ecotoxicology[J]. Functional Ecology, 1993, 7(3):249 张潇峮, 王伟, 罗鸣钟, 等. 三苯基锡和聚苯乙烯微塑料联合暴露对胭脂鱼幼鱼的急性毒性效应[J]. 淡水渔业, 2020, 50(4):33-38 Zhang X Q, Wang W, Luo M Z, et al. Single and combined effects of (polystyrene) microplastics and triphenyltin on juveniles Myxocryprinus asiaticus[J]. Freshwater Fisheries, 2020, 50(4):33-38(in Chinese)
Qu H, Ma R X, Barrett H, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis)[J]. Environment International, 2020, 136:105480 Lewis M, Thursby G. Aquatic plants:Test species sensitivity and minimum data requirement evaluations for chemical risk assessments and aquatic life criteria development for the USA[J]. Environmental Pollution, 2018, 238:270-280 Heijerick D G, Carey S. The toxicity of molybdate to freshwater and marine organisms. Ⅲ. Generating additional chronic toxicity data for the refinement of safe environmental exposure concentrations in the US and Europe[J]. The Science of the Total Environment, 2017, 609:420-428 杜建国, 赵佳懿, 陈彬, 等. 应用物种敏感性分布评估重金属对海洋生物的生态风险[J]. 生态毒理学报, 2013, 8(4):561-570 Du J G, Zhao J Y, Chen B, et al. Assessing ecological risks of heavy metals to marine organisms by species sensitivity distributions[J]. Asian Journal of Ecotoxicology, 2013, 8(4):561-570(in Chinese)
McGlade J, Fahim I S, Green D, et al. From pollution to solution:A global assessment of marine litter and plastic pollution[R]. Nairobi:United Nations Environment Programme, 2021 Cózar A, Echevarría F, González-Gordillo J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28):10239-10244 Nolte T M, Hartmann N B, Kleijn J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption[J]. Aquatic Toxicology, 2017, 183:11-20 Cedervall T, Hansson L A, Lard M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 2012, 7(2):e32254 洪喻, 郝立翀, 陈足音. 新兴污染物对微藻的毒性作用与机制研究进展[J]. 生态毒理学报, 2019, 14(5):22-45 Hong Y, Hao L C, Chen Z Y. Research progress on the toxic effects of emerging pollutants on microalgae and the mechanisms[J]. Asian Journal of Ecotoxicology, 2019, 14(5):22-45(in Chinese)
王素春, 刘光洲, 张欢, 等. 微塑料对微藻的毒性效应研究进展[J]. 海洋环境科学, 2019, 38(2):192-197 Wang S C, Liu G Z, Zhang H, et al. Toxicity research progress of microplastics on microalgae[J]. Marine Environmental Science, 2019, 38(2):192-197(in Chinese)
Frydkjær C K, Iversen N, Roslev P. Ingestion and egestion of microplastics by the cladoceran Daphnia magna:Effects of regular and irregular shaped plastic and sorbed phenanthrene[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(6):655-661 Koelmans A A, Besseling E, Foekema E, et al. Risks of plastic debris:Unravelling fact, opinion, perception, and belief[J]. Environmental Science & Technology, 2017, 51(20):11513-11519 Massos A, Turner A. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 2017, 227:139-145 Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246:26-33 Prata J C, Lavorante B R B O, Montenegro B S M, et al. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii[J]. Aquatic Toxicology, 2018, 197:143-152 Yang W F, Gao X X, Wu Y X, et al. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2020, 195:110484 Huang W, Song B, Liang J, et al. Microplastics and associated contaminants in the aquatic environment:A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health[J]. Journal of Hazardous Materials, 2021, 405:124187 Lusher A L, Burke A, O'Connor I, et al. Microplastic pollution in the Northeast Atlantic Ocean:Validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1-2):325-333 Desforges J P, Galbraith M, Dangerfield N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1-2):94-99 -

计量
- 文章访问数: 2532
- HTML全文浏览数: 2532
- PDF下载数: 89
- 施引文献: 0