烟草悬浮细胞在镉胁迫下微丝形态与黏弹性变化的实时监测
Real-time Monitoring of Microfilament Morphology and Viscoelasticity of Tobacco Suspension Cells under Cadmium Stress
-
摘要: 本文利用增强型绿色荧光蛋白标记微丝(Lifeact-EGFP)的烟草为供试材料,在LumascopeTM720全自动活细胞成像系统下观察了10-4~10-8 mol·L-1镉离子胁迫下及空白对照的Lifeact-EGFP烟草悬浮细胞的微丝聚合-解聚情况的实时变化。使用石英晶体微天平技术监测了10-4~10-8 mol·L-1镉离子胁迫下及空白对照的烟草悬浮细胞黏弹性实时变化。进而测定了10-4~10-8 mol·L-1镉离子胁迫下及空白对照的烟草悬浮细胞的过氧化氢酶活力变化情况。研究发现,在镉逆境胁迫早期,烟草悬浮细胞的微丝结构、细胞黏弹性指数变化和逆境相关酶活力变化存在一定程度的关联。本研究尝试从细胞层面探索镉毒害对烟草细胞生理特征的影响,为镉胁迫下植物细胞生理生化研究提供了新证据。Abstract: In this paper, using tobacco with enhanced green fluorescent protein labeled microfilament (Lifeact-EGFP) as the test material, real-time changes in the polymerization and de-polymerization of microfilaments of Lifeact-EGFP tobacco suspension cells in the presence and absence of cadmium stress (10-4~10-8 mol·L-1) were observed under the LumascopeTM 720 automatic live cell imaging system. Quartz crystal microbalance (QCM) technology was used to monitor the real-time changes of viscoelasticity of tobacco suspension cells under the stress of 10-4~10-8 mol·L-1 cadmium ion and in the absence of cadmium ion. Moreover, the changes in catalase activity of tobacco suspension cells under the stress of 10-4 to 10-8 mol·L-1 cadmium ion and the blank control without cadmium ion were measured. It was found that changes in the microfilament structure, cell viscoelasticity index and cadmium stress related enzyme activity of tobacco suspension cells were correlated to some extent in the early stage of cadmium stress. This study attempts to explore the effects of cadmium toxicity on the physiological characteristics of tobacco cells from the cellular level, and provides new evidence for the physiological and biochemical research of plant cells under cadmium stress.
-
Key words:
- cadmium stress /
- tobacco suspension cells /
- cytoskeleton /
- microfilament /
- cell viscoelastic index /
- CAT /
- dynamic monitoring
-
-
张军, 束文圣. 植物对重金属镉的耐受机制[J]. 植物生理与分子生物学学报, 2006, 32(1):1-8 Zhang J, Shu W S. Mechanisms of heavy metal cadmium tolerance in plants[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(1):1-8(in Chinese)
胡金朝. 重金属污染对不同生境水生植物的毒害机理研究[D]. 南京:南京师范大学, 2006:106-112 Hu J C. The toxic mechanism study of heavy metal pollution on aquatic plant under different growth conditions[D]. Nanjing:Nanjing Normal University, 2006:106 -112(in Chinese)
周红卫, 施国新, 杜开和, 等. Cd2+污染对水花生生理生化及超微结构的影响[J]. 应用生态学报, 2003, 14(9):1581-1584 Zhou H W, Shi G X, Du K H, et al. Toxic effects of Cd2+ pollution on the biochemical and physiological characters and ultrastructure of Alternanthera philoxeroides[J]. Chinese Journal of Applied Ecology, 2003, 14(9):1581-1584(in Chinese)
袁祖丽, 马新明, 韩锦峰, 等. 镉污染对烟草叶片超微结构及部分元素含量的影响[J]. 生态学报, 2005, 25(11):2919-2927 Yuan Z L, Ma X M, Han J F, et al. Effect of Cd Contamination on ultramicroscopic structure and some elements content of tobacco leaves[J]. Acta Ecologica Sinica, 2005, 25(11):2919-2927(in Chinese)
王模善, 赵铁铭. 重金属镉对沉水植物毒性效应的研究[J]. 西南大学学报(自然科学版), 2008, 30(4):128-134 Wang M S, Zhao T M. Toxicity of cadmium to submerged macrophytes[J]. Journal of Southwest University (Natural Science Edition), 2008, 30(4):128-134(in Chinese) 戴灵鹏, 熊治廷, 马海虎. 镉对满江红(Azolla imbricata)-鱼腥藻(Anabaena azollae)共生体氮代谢的影响[J]. 生态学报, 2009, 29(3):1629-1635 Dai L P, Xiong Z T, Ma H H. Effects of cadmium on nitrogen metabolism in Azolla imbricata-Anabaena azollae symbiosis[J]. Acta Ecologica Sinica, 2009, 29(3):1629-1635(in Chinese)
戴娟, 赖子尼, 王超, 等. 镉胁迫对浮游藻类群落演替研究[C]//中国水产学会. 2007年中国水产学会学术年会暨水产微生态调控技术论坛论文摘要汇编. 桂林:中国水产学会, 2007:97 马頔. 镉胁迫对藻类生物多样性影响的微宇宙实验研究[D]. 西安:西北大学, 2018:28-31 Ma D. The relationship between algae biodiversity and biomass under different cadmium stress:A microcosm experiment[D]. Xi'an:Northwest University, 2018:28 -31(in Chinese)
孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2014, 47(12):2384-2394 Sun C, Chen S B, Song W E, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution[J]. Scientia Agricultura Sinica, 2014, 47(12):2384-2394(in Chinese)
赵雄, 李福燕, 张冬明, 等. 水稻土镉污染与水稻镉含量相关性研究[J]. 农业环境科学学报, 2009, 28(11):2236-2240 Zhao X, Li F Y, Zhang D M, et al. Relationship between paddy soils cadmium pollution and cadmium content in rice[J]. Journal of Agro-Environment Science, 2009, 28(11):2236-2240(in Chinese)
杨丹慧. 重金属离子对高等植物光合膜结构与功能的影响[J]. 植物学通报, 1991, 26(3):26-29 Yang D H. The effects of heavy metals on the structure and function of photosynthetic membranes in higher plants[J]. Chinese Bulletin of Botany, 1991, 26(3):26-29(in Chinese)
伍自力, 余孟瑶, 陈露, 等. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2):171-179 Wu Z L, Yu M Y, Chen L, et al. Transcriptome analysis of Physcomitrella patens response to cadmium stress by Bayesian network[J]. Chinese Bulletin of Botany, 2015, 50(2):171-179(in Chinese)
吴坤, 吴中红, 邰付菊, 等. 镉胁迫对烟草叶激素水平、光合特性、荧光特性的影响[J]. 生态学报, 2011, 31(16):4517-4524 Wu K, Wu Z H, Tai F J, et al. Effects of cadmium on the contents of phytohormones, photosynthetic performance and fluorescent characteristics in tobacco leaves[J]. Acta Ecologica Sinica, 2011, 31(16):4517-4524(in Chinese)
袁祖丽, 吴中红. 镉胁迫对烟草根抗氧化能力和激素含量的影响[J]. 生态学报, 2010, 30(15):4109-4118 Yuan Z L, Wu Z H. Effect of cadmium on antioxidative capability and phytohormone level in tobacco roots[J]. Acta Ecologica Sinica, 2010, 30(15):4109-4118(in Chinese)
汤春芳, 刘云国, 曾光明, 等. 镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J]. 植物生理与分子生物学学报, 2004, 30(4):469-474 Tang C F, Liu Y G, Zeng G M, et al. Effects of cadmium stress on active oxygen generation, lipid peroxidation and antioxidant enzyme activities in radish seedlings[J]. Acta Photophysiologica Sinica, 2004, 30(4):469-474(in Chinese)
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929 Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J]. Acta Ecologica Sinica, 2015, 35(23):7921-7929(in Chinese)
张玲, 王焕校. 镉胁迫下小麦根系分泌物的变化[J]. 生态学报, 2002, 22(4):496-502 Zhang L, Wang H X. Changes of root exudates to cadmium stress in wheat (Triticum aestivm L.)[J]. Acta Ecologica Sinica, 2002, 22(4):496-502(in Chinese)
黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53(4):451-455 Huang X Y, Zhao F J. A defensin-like protein regulates cadmium accumulation in rice[J]. Chinese Bulletin of Botany, 2018, 53(4):451-455(in Chinese)
管彬, 周竹青. 细胞自噬在拟南芥应答镉胁迫中的作用[J]. 江苏农业科学, 2019, 47(14):90-95 Guan B, Zhou Z Q. Role of autophagy in response to cadmium stress in Arabidopsis thaliana[J]. Jiangsu Agricultural Sciences, 2019, 47(14):90-95(in Chinese)
赵步洪, 张洪熙, 奚岭林, 等. 杂交水稻不同器官镉浓度与累积量[J]. 中国水稻科学, 2006, 20(3):306-312 Zhao B H, Zhang H X, Xi L L, et al. Concentrations and accumulation of cadmium in different organs of hybrid rice[J]. Chinese Journal of Rice Science, 2006, 20(3):306-312(in Chinese)
Moral R, Cortés A, Gomez I, et al. Assessing changes in Cd phytoavailability to tomato in amended calcareous soils[J]. Bioresource Technology, 2002, 85(1):63-68 徐萍. 镉胁迫对大蒜生理生化、微管骨架及超微结构的影响[D]. 天津:天津师范大学, 2008:45-55 Xu P. Effects of cadmium stress on physiology and biochemistry, microtubule skeleton and ultrastructure of garlic[D]. Tianjin:Tianjin Normal University, 2008:45 -55(in Chinese)
周菲, 周铁安, 潘炜松. QCM实时监测五价砷胁迫对水稻悬浮细胞黏弹性的影响[J]. 激光生物学报, 2019, 28(5):452-457 , 420 Zhou F, Zhou T A, Pan W S. Real-time monitoring of the effect on the viscoelasticity of rice suspension cells with arsenic (Ⅴ) stress using QCM[J]. Acta Laser Biology Sinica, 2019, 28(5):452-457, 420(in Chinese)
Riedl J, Crevenna A H, Kessenbrock K, et al. Lifeact:A versatile marker to visualize F-actin[J]. Nature Methods, 2008, 5(7):605-607 张煜, 周铁安, 陈宗星, 等. 宽频耗散型石英晶体微天平实时监测PEG6000胁迫下烟草细胞的黏弹性响应[J]. 农业生物技术学报, 2020, 28(12):2270-2280 Zhang Y, Zhou T A, Chen Z X, et al. Real-time monitoring of viscoelastic responses of tobacco (Nicotiana tabacum) cells under PEG6000 stress by wide frequency quartz crystal microbalance with dissipation[J]. Journal of Agricultural Biotechnology, 2020, 28(12):2270-2280(in Chinese)
Zhou T A, Marx K A, Dewilde A H, et al. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance[J]. Analytical Biochemistry, 2012, 421(1):164-171 马捷, 陈丰源, 周贝贝, 等. 海洋硅藻细胞表面物理化学特性对镉累积的影响[J]. 生态毒理学报, 2019, 14(1):75-82 Ma J, Chen F Y, Zhou B B, et al. The effects of surface physicochemical properties on cadmium accumulation in marine diatoms[J]. Asian Journal of Ecotoxicology, 2019, 14(1):75-82(in Chinese)
González L F, Rojas M C. Role of wall peroxidases in oat growth inhibition by DIMBOA[J]. Phytochemistry, 1999, 50(6):931-937 Renew S, Heyno E, Schopfer P, et al. Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy[J]. The Plant Journal:for Cell and Molecular Biology, 2005, 44(2):342-347 Clemens S, Antosiewicz D M, Ward J M, et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(20):12043-12048 Subbaiah C C, Zhang J, Sachs M M. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings[J]. Plant Physiology, 1994, 105(1):369-376 王丙莲, 孟庆军, 杨俊慧, 等. 藻细胞膜电信号对重金属的快速反应研究[J]. 生态毒理学报, 2007, 2(2):172-177 Wang B L, Meng Q J, Yang J H, et al. Study on rapid responses of algae cell membrane electric signal to heavy metals[J]. Asian Journal of Ecotoxicology, 2007, 2(2):172-177(in Chinese)
Hanć A, Maƚecka A, Kutrowska A, et al. Direct analysis of elemental biodistribution in pea seedlings by LA-ICP-MS, EDX and confocal microscopy:Imaging and quantification[J]. Microchemical Journal, 2016, 128:305-311 金慧英, 李法卿, 谭维国, 等. 镉中毒肝脏过氧化氢(H2O2)定位及抗氧化系统的变化[J]. 中国公共卫生, 2000, 16(1):15-16 Jin H Y, Li F Q, Tan W G, et al. Study on hydrogen peroxide (H2O2) localization and antioxidative system changes of hepatocytes after cadmium exposure[J]. China Public Health, 2000, 16(1):15-16(in Chinese)
Garnier L, Simon-Plas F, Thuleau P, et al. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity[J]. Plant, Cell & Environment, 2006, 29(10):1956-1969 Dalghi M G, Ferreira-Gomes M, Montalbetti N, et al. Cortical cytoskeleton dynamics regulates plasma membrane calcium ATPase isoform-2(PMCA2) activity[J]. Biochimica et Biophysica Acta Molecular Cell Research, 2017, 1864(8):1413-1424 Yemets A, Horiunova I, Blume Y. Cadmium, nickel, copper, and zinc influence on microfilament organization in Arabidopsis root cells[J]. Cell Biology International, 2021, 45(1):211-226 Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J]. Journal of Plant Physiology, 2011, 168(11):1157-1167 -

计量
- 文章访问数: 1773
- HTML全文浏览数: 1773
- PDF下载数: 102
- 施引文献: 0