聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响

张晓飞, 余秋然, 赵宇航, 石展耀, 周利, 李二超, 谢嘉. 聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响[J]. 生态毒理学报, 2022, 17(6): 301-314. doi: 10.7524/AJE.1673-5897.20220114001
引用本文: 张晓飞, 余秋然, 赵宇航, 石展耀, 周利, 李二超, 谢嘉. 聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响[J]. 生态毒理学报, 2022, 17(6): 301-314. doi: 10.7524/AJE.1673-5897.20220114001
Zhang Xiaofei, Yu Qiuran, Zhao Yuhang, Shi Zhanyao, Zhou Li, Li Erchao, Xie Jia. Effect of High Density-polyethylene on Growth Performance, Antioxidant Capacity, Immune Functions and Intestinal Microbiota of Oreochromis niloticus[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 301-314. doi: 10.7524/AJE.1673-5897.20220114001
Citation: Zhang Xiaofei, Yu Qiuran, Zhao Yuhang, Shi Zhanyao, Zhou Li, Li Erchao, Xie Jia. Effect of High Density-polyethylene on Growth Performance, Antioxidant Capacity, Immune Functions and Intestinal Microbiota of Oreochromis niloticus[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 301-314. doi: 10.7524/AJE.1673-5897.20220114001

聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响

    作者简介: 张晓飞(1997-),女,硕士研究生,研究方向为环境毒理学,E-mail:18438615387@163.com
    通讯作者: 谢嘉, E-mail: jxie@hainanu.edu.cn
  • 基金项目:

    2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC152);海南大学科研基金资助项目(KYQD(ZR)1870)

  • 中图分类号: X171.5

Effect of High Density-polyethylene on Growth Performance, Antioxidant Capacity, Immune Functions and Intestinal Microbiota of Oreochromis niloticus

    Corresponding author: Xie Jia, jxie@hainanu.edu.cn
  • Fund Project:
  • 摘要: 近年来,微塑料作为一类新型污染物引起了国内外的广泛关注。笔者研究了0、0.01、0.1和5 mg·L-1的高密度聚乙烯微塑料(high-density polyethylene, HDPE, 61~83 μm)胁迫尼罗罗非鱼(Oreochromis niloticus)28 d后的毒性效应。结果表明,HDPE微塑料暴露28 d后,尼罗罗非鱼的成活率、增重率、肝体比与对照组相比无显著差异(P>0.05)。尼罗罗非鱼肝脏丙二醛(MDA)含量在0.01 mg·L-1和5 mg·L-1 HDPE暴露组中显著高于对照组(P<0.05);谷胱甘肽转移酶(GST)活性在5 mg·L-1暴露组中显著高于对照组(P<0.05);与对照组相比,暴露组尼罗罗非鱼肝脏的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和碱性磷酸酶(AKP)活性,以及鱼脑的乙酰胆碱酯酶(AChE)活性无显著差异(P>0.05),而在0.1 mg·L-1暴露组中酸性磷酸酶(ACP)活性显著高于对照组(P<0.05)。尼罗罗非鱼暴露于HDPE微塑料28 d后,肠道菌群16S rDNA测序结果表明,样品中共获得465 336条优化序列,操作分类单元(OTU)总数854个;与对照组相比,微塑料暴露组尼罗罗非鱼肠道中变形菌门、厚壁菌门、拟杆菌门和蓝细菌门的丰度减少,放线菌门丰度增加,但无显著性差异;在5 mg·L-1 HDPE微塑料暴露组中,衣原体门的丰度显著高于对照组(P<0.05)。综上可知,高浓度微塑料暴露能够对尼罗罗非鱼产生氧化胁迫并影响肠道菌群群落结构。研究结果可为揭示聚乙烯对水生生物的毒性效应及其潜在的生态风险评估提供科学依据。
  • 加载中
  • Plastics Europe. The plastics fact-2019[EB/OL].[2022-01-14]. https://www.plasticseurope.org/en/resources/market-data.
    杨光蓉, 陈历睿, 林敦梅. 土壤微塑料污染现状、来源、环境命运及生态效应[J]. 中国环境科学, 2021, 41(1):353-365

    Yang G R, Chen L R, Lin D M. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil[J]. China Environmental Science, 2021, 41(1):353-365(in Chinese)

    National Oceanic and Atmospheric Administration (NOAA). Feature-story/researchers-probe-orca-poop-microplastics-part-1[EB/OL].[2022-01-14]. https://www.fisheries.noaa.gov/
    Zhang J J, Chen Y H, Wang X X, et al. A review of microplastics in the soil environment[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6):937-952
    Zhang W W, Zhang S F, Wang J Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 2017, 231:541-548
    Zhao S Y, Wang T, Zhu L X, et al. Analysis of suspended microplastics in the Changjiang Estuary:Implications for riverine plastic load to the ocean[J]. Water Research, 2019, 161:560-569
    Mai L, You S N, He H, et al. Riverine microplastic pollution in the Pearl River Delta, China:Are modeled estimates accurate?[J]. Environmental Science & Technology, 2019, 53(20):11810-11817
    刘香, 茹小尚, 张立斌. 海洋微塑料污染的生物效应研究进展[J]. 海洋科学, 2021, 45(3):122-133

    Liu X, Ru X S, Zhang L B. Research progress on the biological effects of marine microplastic pollution[J]. Marine Sciences, 2021, 45(3):122-133(in Chinese)

    Avio C G, Gorbi S, Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues:First observations in commercial species from Adriatic Sea[J]. Marine Environmental Research, 2015, 111:18-26
    Kolandhasamy P, Su L, Li J N, et al. Adherence of microplastics to soft tissue of mussels:A novel way to uptake microplastics beyond ingestion[J]. Science of the Total Environment, 2018, 610-611:635-640
    Bellas J, Martínez-Armental J, Martínez-Cámara A, et al. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts[J]. Marine Pollution Bulletin, 2016, 109(1):55-60
    Karlsson T M, Vethaak A D, Almroth B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish:Method development and microplastic accumulation[J]. Marine Pollution Bulletin, 2017, 122(1-2):403-408
    Mak C W, Ching-Fong Yeung K, Chan K M. Acute toxic effects of polyethylene microplastic on adult zebrafish[J]. Ecotoxicology and Environmental Safety, 2019, 182:109442
    Critchell K, Hoogenboom M O. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus)[J]. PLoS One, 2018, 13(3):e0193308
    Brandts I, Teles M, Tvarijonaviciute A, et al. Effects of polymethylmethacrylate nanoplastics on Dicentrarchus labrax[J]. Genomics, 2018, 110(6):435-441
    Hamed M, Soliman H A M, Osman A G M, et al. Assessment the effect of exposure to microplastics in Nile tilapia (Oreochromis niloticus) early juvenile:Ⅰ. Blood biomarkers[J]. Chemosphere, 2019, 228:345-350
    Jin Y X, Xia J Z, Pan Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329
    Evariste L, Barret M, Mottier A, et al. Gut microbiota of aquatic organisms:A key endpoint for ecotoxicological studies[J]. Environmental Pollution, 2019, 248:989-999
    Lu L, Luo T, Zhao Y, et al. Interaction between microplastics and microorganism as well as gut microbiota:A consideration on environmental animal and human health[J]. Science of the Total Environment, 2019, 667:94-100
    Song J A, Choi C Y, Park H S. Exposure of bay scallop Argopecten irradians to micro-polystyrene:Bioaccumulation and toxicity[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 236:108801
    Chen Q, Lü W W, Jiao Y, et al. Effects of exposure to waterborne polystyrene microspheres on lipid metabolism in the hepatopancreas of juvenile redclaw crayfish, Cherax quadricarinatus[J]. Aquatic Toxicology, 2020, 224:105497
    Ding J N, Zhang S S, Razanajatovo R M, et al. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus)[J]. Environmental Pollution, 2018, 238:1-9
    Elizalde-Velázquez A, Carcano A M, Crago J, et al. Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas[J]. Environmental Pollution, 2020, 259:113937
    吴凡, 田娟, 喻丽娟, 等. 饲料糖脂比对养成中期吉富罗非鱼生长性能、体成分和血清生化指标的影响[J]. 动物营养学报, 2020, 32(12):5805-5815

    Wu F, Tian J, Yu L J, et al. Effects of dietary carbohydrate to lipid ratio on growth performance, body composition and serum biochemical indices of genetic improvement of farmedtilapia in growth mid-stage[J]. Chinese Journal of Animal Nutrition, 2020, 32(12):5805-5815(in Chinese)

    陈培赟, 任潇潇, 毕保良. 饲料中添加黄藤素对吉富罗非鱼生长性能、抗氧化能力和非特异性免疫的影响[J]. 上海海洋大学学报, 2021, 30(5):812-820

    Chen P Y, Ren X X, Bi B L. Effects of dietary palmatine on growth performance, antioxidant capacity and non-specific immunity of GIFT strain of Nile tilapia (Oreochromis niloticus)[J]. Journal of Shanghai Ocean University, 2021, 30(5):812-820(in Chinese)

    龚福来, 林雪, 王红权. 不同维生素C源对吉富罗非鱼生长性能、抗氧化能力和免疫力的影响[J]. 动物营养学报, 2021, 33(4):2378-2389

    Gong F L, Lin X, Wang H Q. Effects of different vitamin C sources on growth performance, antioxidant capacity and immunity of genetically improved farmed tilapia[J]. Chinese Journal of Animal Nutrition, 2021, 33(4):2378-2389(in Chinese)

    Pitt J A, Kozal J S, Jayasundara N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 194:185-194
    Wen B, Zhang N, Jin S R, et al. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid[J]. Aquatic Toxicology, 2018, 195:67-76
    Zhu M, Chernick M, Rittschof D, et al. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2020, 220:105396
    Lei L L, Wu S Y, Lu S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619-620:1-8
    王小娇, 胡国成, 张丽娟, 等. 重金属镉胁迫对尼罗罗非鱼抗氧化酶系统的影响[J]. 海洋环境科学, 2016, 35(5):647-651

    , 657 Wang X J, Hu G C, Zhang L J, et al. Influence of cadmium on antioxidant defense system in juvenile of Orechromis niloticus[J]. Marine Environmental Science, 2016, 35(5):647-651, 657(in Chinese)

    罗其勇. 重金属暴露引起鱼体氧化应激反应的研究进展[J]. 安徽农业科学, 2018, 46(25):32-35

    Luo Q Y. Research progress on oxidative stress reaction of fish body caused by heavy metals[J]. Journal of Anhui Agricultural Sciences, 2018, 46(25):32-35(in Chinese)

    Romano N, Renukdas N, Fischer H, et al. Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2020, 238:108862
    Rios-Fuster B, Arechavala-Lopez P, García-Marcos K, et al. Experimental evidence of physiological and behavioral effects of microplastic ingestion in Sparus aurata[J]. Aquatic Toxicology, 2021, 231:105737
    Tlili S, Jemai D, Brinis S, et al. Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus[J]. Chemosphere, 2020, 258:127344
    Chen Q Q, Lackmann C, Wang W Y, et al. Microplastics lead to hyperactive swimming behaviour in adult zebrafish[J]. Aquatic Toxicology, 2020, 224:105521
    Dantas N C F M, Duarte O S, Ferreira W C, et al. Plastic intake does not depend on fish eating habits:Identification of microplastics in the stomach contents of fish on an urban beach in Brazil[J]. Marine Pollution Bulletin, 2020, 153:110959
    Limbu S M, Zhou L, Sun S X, et al. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk[J]. Environment International, 2018, 115:205-219
    韩春艳, 郑清梅, 陈桂丹, 等. 氨氮胁迫对奥尼罗非鱼非特异性免疫的影响[J]. 南方水产科学, 2014, 10(3):47-52

    Han C Y, Zheng Q M, Chen G D, et al. Effect of ammonia-N stress on non-specific immunity of tilapia (Oreochromis niloticus×O. areus)[J]. South China Fisheries Science, 2014, 10(3):47-52(in Chinese)

    毕建飞, 张海朋, 曲磊, 等. 维氏气单胞菌3种免疫原对鲫鱼ACP、AKP、POD和SOD活力的影响[J]. 黑龙江畜牧兽医, 2017(9):12-15 Bi J F, Zhang H P, Qu L, et al. The effects of three types of Aeromonas veronii immunogen on activities of ACP, AKP, POD and SOD in blood of Carassius[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017

    (9):12-15(in Chinese)

    谢丽玲, 谢俊, 赵斌, 等. 重金属污染下龟壳攀鲈组织中ACP和AKP的活力比较[J]. 生态毒理学报, 2016, 11(3):323-330

    Xie L L, Xie J, Zhao B, et al. Activity comparison of ACP and AKP in the tissues of Anabas testudineus from heavy metal-polluted areas[J]. Asian Journal of Ecotoxicology, 2016, 11(3):323-330(in Chinese)

    耿艳芳, 赵晓祥. 颜料红23对锦鲤的毒性及对部分组织中磷酸酶活性的影响[J]. 安全与环境学报, 2017, 17(1):386-391

    Geng Y F, Zhao X X. Effect of sublethal pigment red 23 on the acute toxicity of Cyprinus carpio as well as the accumulated phosphatase activities in part of their organs[J]. Journal of Safety and Environment, 2017, 17(1):386-391(in Chinese)

    陈孟玲, 高菲, 王新元, 等. 微塑料对黑海参(Holothuria atra)免疫和消化生理的影响[J]. 海洋科学, 2021, 45(4):126-135

    Chen M L, Gao F, Wang X Y, et al. Effects of microplastics on immunity and digestion of sea cucumber, Holothuria atra[J]. Marine Sciences, 2021, 45(4):126-135(in Chinese)

    张婧怡, 肖俊, 梁军能, 等. 不同养殖环境下罗非鱼肠道微生物的比较分析[J]. 广西科学院学报, 2020, 36(2):164-170

    Zhang J Y, Xiao J, Liang J N, et al. Comparative analysis of intestinal microorganisms of tilapia under different culture environment[J]. Journal of Guangxi Academy of Sciences, 2020, 36(2):164-170(in Chinese)

    佟延南, 李芳远, 李忠琴, 等. 不同养殖阶段罗非鱼肠道微生物多样性的动态分析[J]. 南方农业学报, 2018, 49(7):1415-1422

    Tong Y N, Li F Y, Li Z Q, et al. Dynamic analysis of intestinal microbial diversity in tilapia at different culture stages[J]. Journal of Southern Agriculture, 2018, 49(7):1415-1422(in Chinese)

    Zhang Y T, Chen H X, He S Q, et al. Subchronic toxicity of dietary sulfamethazine and nanoplastics in marine medaka (Oryzias melastigma):Insights from the gut microbiota and intestinal oxidative status[J]. Ecotoxicology and Environmental Safety, 2021, 226:112820
    Ali S S, Elsamahy T, Koutra E, et al. Degradation of conventional plastic wastes in the environment:A review on current status of knowledge and future perspectives of disposal[J]. Science of the Total Environment, 2021, 771:144719
    Burnard D, Polkinghorne A. Chlamydial infections in wildlife-conservation threats and/or reservoirs of 'spill-over' infections?[J]. Veterinary Microbiology, 2016, 196:78-84
    Taylor-Brown A, Polkinghorne A. New and emerging chlamydial infections of creatures great and small[J]. New Microbes and New Infections, 2017, 18:28-33
    Sood N, Pradhan P K, Verma D K, et al. Epitheliocystis in rohu Labeo rohita (Hamilton, 1822) is caused by novel Chlamydiales[J]. Aquaculture, 2019, 505:539-543
    Li L L, Amara R, Souissi S, et al. Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota[J]. Science of the Total Environment, 2020, 745:141018
    Collingro A, K stlbacher S, Horn M. Chlamydiae in the environment[J]. Trends in Microbiology, 2020, 28(11):877-888
    Anokyewaa M A, Amoah K, Li Y, et al. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China[J]. Aquaculture Reports, 2021, 21:100784
    Xia Y, Lu M X, Chen G, et al. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus[J]. Fish & Shellfish Immunology, 2018, 76:368-379
    Nafie M S, Awad N M, Tag H M, et al. Micromonospora species from rarely-exploited Egyptian habitats:Chemical profile, antimicrobial, and antitumor activities through antioxidant property[J]. Applied Microbiology and Biotechnology, 2021, 105(6):2427-2439
    Lazar J T, Tabor J J. Bacterial two-component systems as sensors for synthetic biology applications[J]. Current Opinion in Systems Biology, 2021, 28:100398
    Parrot C, Moulinier L, Bernard F, et al. Peculiarities of aminoacyl-tRNA synthetases from trypanosomatids[J]. The Journal of Biological Chemistry, 2021, 297(2):100913
    Zou Y L, Yang Y Y, Fu X X, et al. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease[J]. Molecular Therapy-Nucleic Acids, 2021, 25:372-387
    Mattsson K, Ekvall M T, Hansson L A, et al. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 2015, 49(1):553-561
    Modoux M, Rolhion N, Mani S, et al. Tryptophan metabolism as a pharmacological target[J]. Trends in Pharmacological Sciences, 2021, 42(1):60-73
    Dagenais-Lussier X, Loucif H, Beji C, et al. Latest developments in tryptophan metabolism:Understanding its role in B cell immunity[J]. Cytokine & Growth Factor Reviews, 2021, 59:111-117
  • 加载中
计量
  • 文章访问数:  1554
  • HTML全文浏览数:  1554
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-14

聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响

    通讯作者: 谢嘉, E-mail: jxie@hainanu.edu.cn
    作者简介: 张晓飞(1997-),女,硕士研究生,研究方向为环境毒理学,E-mail:18438615387@163.com
  • 1. 海南大学海洋学院,海口 570228;
  • 2. 华东师范大学生命科学学院,上海 200241
基金项目:

2019年海南省基础与应用基础研究计划(自然科学领域)高层次人才项目(2019RC152);海南大学科研基金资助项目(KYQD(ZR)1870)

摘要: 近年来,微塑料作为一类新型污染物引起了国内外的广泛关注。笔者研究了0、0.01、0.1和5 mg·L-1的高密度聚乙烯微塑料(high-density polyethylene, HDPE, 61~83 μm)胁迫尼罗罗非鱼(Oreochromis niloticus)28 d后的毒性效应。结果表明,HDPE微塑料暴露28 d后,尼罗罗非鱼的成活率、增重率、肝体比与对照组相比无显著差异(P>0.05)。尼罗罗非鱼肝脏丙二醛(MDA)含量在0.01 mg·L-1和5 mg·L-1 HDPE暴露组中显著高于对照组(P<0.05);谷胱甘肽转移酶(GST)活性在5 mg·L-1暴露组中显著高于对照组(P<0.05);与对照组相比,暴露组尼罗罗非鱼肝脏的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和碱性磷酸酶(AKP)活性,以及鱼脑的乙酰胆碱酯酶(AChE)活性无显著差异(P>0.05),而在0.1 mg·L-1暴露组中酸性磷酸酶(ACP)活性显著高于对照组(P<0.05)。尼罗罗非鱼暴露于HDPE微塑料28 d后,肠道菌群16S rDNA测序结果表明,样品中共获得465 336条优化序列,操作分类单元(OTU)总数854个;与对照组相比,微塑料暴露组尼罗罗非鱼肠道中变形菌门、厚壁菌门、拟杆菌门和蓝细菌门的丰度减少,放线菌门丰度增加,但无显著性差异;在5 mg·L-1 HDPE微塑料暴露组中,衣原体门的丰度显著高于对照组(P<0.05)。综上可知,高浓度微塑料暴露能够对尼罗罗非鱼产生氧化胁迫并影响肠道菌群群落结构。研究结果可为揭示聚乙烯对水生生物的毒性效应及其潜在的生态风险评估提供科学依据。

English Abstract

参考文献 (61)

目录

/

返回文章
返回