亚慢性低砷暴露对大鼠肠道及菌群的影响研究

左佩佩, 王国泽, 魏绍峰, 罗鹏. 亚慢性低砷暴露对大鼠肠道及菌群的影响研究[J]. 生态毒理学报, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
引用本文: 左佩佩, 王国泽, 魏绍峰, 罗鹏. 亚慢性低砷暴露对大鼠肠道及菌群的影响研究[J]. 生态毒理学报, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
Zuo Peipei, Wang Guoze, Wei Shaofeng, Luo Peng. Effects of Subchronic Low-arsenic Exposure on Intestine and Gut Microbiota in Rats[J]. Asian journal of ecotoxicology, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
Citation: Zuo Peipei, Wang Guoze, Wei Shaofeng, Luo Peng. Effects of Subchronic Low-arsenic Exposure on Intestine and Gut Microbiota in Rats[J]. Asian journal of ecotoxicology, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001

亚慢性低砷暴露对大鼠肠道及菌群的影响研究

    作者简介: 左佩佩(1994—),女,硕士研究生,研究方向为营养与健康,E-mail:351015647@qq.com
    通讯作者: 罗鹏, E-mail: luopeng@gmc.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(82173642,U1812403-6-2-4);贵州省科技厅科技计划项目(黔科合支撑[2021]一般134);贵州省教育厅自然科学研究项目(黔教合KY字[2021]008)

  • 中图分类号: X171.5

Effects of Subchronic Low-arsenic Exposure on Intestine and Gut Microbiota in Rats

    Corresponding author: Luo Peng, luopeng@gmc.edu.cn
  • Fund Project:
  • 摘要: 通过构建低剂量亚砷酸钠中毒SD大鼠模型,初步探究低砷暴露对肠道损伤及菌群的影响。雄性SD大鼠随机分为NC组(正常组)、AS1组(砷染毒12周)、AS2组(砷染毒16周)给予亚砷酸钠1 mg·kg-1灌胃染毒,一周6 d,每天一次,实验终期收集各组大鼠血液和脏器。苏木精-伊红(HE)染色观察结肠组织病理学变化;16S rRNA基因检测技术检测肠道菌群的变化;显色基质鲎试剂盒检测肝门静脉中内毒素(LPS)水平。结果表明,砷组中结肠的肠绒毛排列紊乱,间隙大,随着砷暴露时间的增加,有炎性细胞的浸润,结肠的长度缩短,肠砷含量逐渐升高,肝门静脉中的LPS水平显著升高(P<0.05)。砷暴露后与正常组相比,厚壁菌门(Firmicutes)的丰度显著降低(P<0.05),拟杆菌门(Bacteroidota)的丰度增加;从属水平看在砷暴露组中保护性细菌的丰度减少,如RoseburiaAnaerovoracaceaeBlautia等,增加Faecalibaculum、丹毒丝菌(Erysipelotrichaceae)和QuinellaP<0.05)等条件致病菌的丰度,并且呈现时间依赖性增高。因此,亚慢性低剂量亚砷酸钠诱导大鼠肠道发生损伤,肠道菌群的组成结构发生改变。
  • 加载中
  • Palma-Lara I, Martínez-Castillo M, Quintana-Pérez J C, et al. Arsenic exposure:A public health problem leading to several cancers[J]. Regulatory Toxicology and Pharmacology, 2020, 110:104539
    王宇泽, 谭超, 罗勇军, 等. 我国砷中毒的医学地理分布特点及防治措施研究进展[J]. 解放军预防医学杂志, 2020, 38(1):103-105
    Erdei E, Shuey C, Pacheco B, et al. Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation[J]. Journal of Autoimmunity, 2019, 99:15-23
    Ferrario D, Gribaldo L, Hartung T. Arsenic exposure and immunotoxicity:A review including the possible influence of age and sex[J]. Current Environmental Health Reports, 2016, 3(1):1-12
    Yu H Y, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
    岳宏宇, 丛春莉, 李艳梅. 肠道微生态与肠道疾病关系的研究进展[J]. 中国真菌学杂志, 2020, 15(4):240-243
    Ma Q T, Li Y Q, Wang J K, et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing[J]. Biomedecine & Pharmacotherapie, 2020, 124:109873
    Han Y, Park H, Choi B R, et al. Alteration of microbiome profile by D-allulose in amelioration of high-fat-diet-induced obesity in mice[J]. Nutrients, 2020, 12(2):352
    Wang H Y, Zhou C L, Huang J X, et al. The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease[J]. American Journal of Translational Research, 2020, 12(5):1569-1583
    Chi L, Xue J C, Tu P C, et al. Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice[J]. Archives of Toxicology, 2019, 93(1):25-35
    Gokulan K, Arnold M G, Jensen J, et al. Exposure to arsenite in CD-1 mice during juvenile and adult stages:Effects on intestinal microbiota and gut-associated immune status[J]. mBio, 2018, 9(4):e01418-e01418
    Chi L, Bian X M, Gao B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2017, 160(2):193-204
    Khanna S, Raffals L E. The microbiome in Crohn's disease:Role in pathogenesis and role of microbiome replacement therapies[J]. Gastroenterology Clinics of North America, 2017, 46(3):481-492
    Yu H N, Guo Z Z, Shen S R, et al. Effects of taurine on gut microbiota and metabolism in mice[J]. Amino Acids, 2016, 48(7):1601-1617
    Pandurangan A K, Mohebali N, Norhaizan M E, et al. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice[J]. Drug Design, Development and Therapy, 2015, 9:3923-3934
    孙宇婷, 徐焕华, 聂窈, 等. 雄黄及三氧化二砷对小鼠肠道菌群的初步探究[J]. 中国中药杂志, 2020, 45(1):142-148

    Sun Y T, Xu H H, Nie Y, et al. Preliminary study of Realgar and arsenic trioxide on gut microbiota of mice[J]. China Journal of Chinese Materia Medica, 2020, 45(1):142-148(in Chinese)

    Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267
    Chi L, Lai Y J, Tu P C, et al. Lipid and cholesterol homeostasis after arsenic exposure and antibiotic treatment in mice:Potential role of the microbiota[J]. Environmental Health Perspectives, 2019, 127(9):97002
    Lemaître N, Liang X F, Najeeb J, et al. Curative treatment of severe Gram-negative bacterial infections by a new class of antibiotics targeting LpxC[J]. mBio, 2017, 8(4):e00674-e00617
    Mosca A, Leclerc M, Hugot J P. Gut microbiota diversity and human diseases:Should we reintroduce key predators in our ecosystem?[J]. Frontiers in Microbiology, 2016, 7:455
    Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism[J]. Toxicology and Applied Pharmacology, 2015, 289(3):397-408
    Potera C. Clues to arsenic's toxicity:Microbiome alterations in the mouse gut[J]. Environmental Health Perspectives, 2014, 122(3):A82
    Man S M, Kaakoush N O, Mitchell H M. The role of bacteria and pattern-recognition receptors in Croh's disease[J]. Nature Reviews Gastroenterology & Hepatology, 2011, 8(3):152-168
    Kaakoush N O. Insights into the role of Erysipelotrichaceae in the human host[J]. Frontiers in Cellular and Infection Microbiology, 2015, 5:84
    Zagato E, Pozzi C, Bertocchi A, et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth[J]. Nature Microbiology, 2020, 5(3):511-524
    Wu F, Lei H, Chen G, et al. In vitro and in vivo studies reveal that hesperetin-7-glucoside a naturally occurring monoglucoside, exhibits strong anti-inflammatory capacity[J]. Journal of Agricultural and Food Chemistry, 2021, 69:12753-12762
    Hamana K, Itoh T, Sakamoto M, et al. Covalently linked polyamines in the cell wall peptidoglycan of the anaerobes belonging to the order Selenomonadales[J]. The Journal of General and Applied Microbiology, 2012, 58(4):339-347
    Xu F H, Cheng Y, Ruan G C, et al. New pathway ameliorating ulcerative colitis:Focus on Roseburia intestinalis and the gut-brain axis[J]. Therapeutic Advances in Gastroenterology, 2021, 14:1-14
  • 加载中
计量
  • 文章访问数:  2662
  • HTML全文浏览数:  2662
  • PDF下载数:  123
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-23
左佩佩, 王国泽, 魏绍峰, 罗鹏. 亚慢性低砷暴露对大鼠肠道及菌群的影响研究[J]. 生态毒理学报, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
引用本文: 左佩佩, 王国泽, 魏绍峰, 罗鹏. 亚慢性低砷暴露对大鼠肠道及菌群的影响研究[J]. 生态毒理学报, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
Zuo Peipei, Wang Guoze, Wei Shaofeng, Luo Peng. Effects of Subchronic Low-arsenic Exposure on Intestine and Gut Microbiota in Rats[J]. Asian journal of ecotoxicology, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001
Citation: Zuo Peipei, Wang Guoze, Wei Shaofeng, Luo Peng. Effects of Subchronic Low-arsenic Exposure on Intestine and Gut Microbiota in Rats[J]. Asian journal of ecotoxicology, 2022, 17(4): 112-121. doi: 10.7524/AJE.1673-5897.20220123001

亚慢性低砷暴露对大鼠肠道及菌群的影响研究

    通讯作者: 罗鹏, E-mail: luopeng@gmc.edu.cn
    作者简介: 左佩佩(1994—),女,硕士研究生,研究方向为营养与健康,E-mail:351015647@qq.com
  • 1. 贵州医科大学公共卫生与健康学院, 环境污染与疾病监控教育部重点实验室, 贵阳 550025;
  • 2. 贵州省食品营养与健康工程研究中心, 贵阳 550025
基金项目:

国家自然科学基金资助项目(82173642,U1812403-6-2-4);贵州省科技厅科技计划项目(黔科合支撑[2021]一般134);贵州省教育厅自然科学研究项目(黔教合KY字[2021]008)

摘要: 通过构建低剂量亚砷酸钠中毒SD大鼠模型,初步探究低砷暴露对肠道损伤及菌群的影响。雄性SD大鼠随机分为NC组(正常组)、AS1组(砷染毒12周)、AS2组(砷染毒16周)给予亚砷酸钠1 mg·kg-1灌胃染毒,一周6 d,每天一次,实验终期收集各组大鼠血液和脏器。苏木精-伊红(HE)染色观察结肠组织病理学变化;16S rRNA基因检测技术检测肠道菌群的变化;显色基质鲎试剂盒检测肝门静脉中内毒素(LPS)水平。结果表明,砷组中结肠的肠绒毛排列紊乱,间隙大,随着砷暴露时间的增加,有炎性细胞的浸润,结肠的长度缩短,肠砷含量逐渐升高,肝门静脉中的LPS水平显著升高(P<0.05)。砷暴露后与正常组相比,厚壁菌门(Firmicutes)的丰度显著降低(P<0.05),拟杆菌门(Bacteroidota)的丰度增加;从属水平看在砷暴露组中保护性细菌的丰度减少,如RoseburiaAnaerovoracaceaeBlautia等,增加Faecalibaculum、丹毒丝菌(Erysipelotrichaceae)和QuinellaP<0.05)等条件致病菌的丰度,并且呈现时间依赖性增高。因此,亚慢性低剂量亚砷酸钠诱导大鼠肠道发生损伤,肠道菌群的组成结构发生改变。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回