藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用

张晓婷, 汪庆, 李思敏, 翟文超, 李双双, 魏贺红, 刘长振, 王雪宁, 许新月. 藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用[J]. 生态毒理学报, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
引用本文: 张晓婷, 汪庆, 李思敏, 翟文超, 李双双, 魏贺红, 刘长振, 王雪宁, 许新月. 藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用[J]. 生态毒理学报, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
Zhang Xiaoting, Wang Qing, Li Simin, Zhai Wenchao, Li Shuangshuang, Wei Hehong, Liu Changzhen, Wang Xuening, Xu Xinyue. Antibacterial Mechanism of Algae and Its Metabolites as Antibiotic Substitutes and Their Application in Livestock and Poultry Breeding[J]. Asian journal of ecotoxicology, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
Citation: Zhang Xiaoting, Wang Qing, Li Simin, Zhai Wenchao, Li Shuangshuang, Wei Hehong, Liu Changzhen, Wang Xuening, Xu Xinyue. Antibacterial Mechanism of Algae and Its Metabolites as Antibiotic Substitutes and Their Application in Livestock and Poultry Breeding[J]. Asian journal of ecotoxicology, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002

藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用

    作者简介: 张晓婷(1997-),女,硕士研究生,研究方向为抗生素和耐药基因的传播扩散和去除研究,E-mail:xtz0418@126.com
    通讯作者: 汪庆, E-mail: wangqing@hebeu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(42077393,52070065);国家重点研发计划(2021YFC1910601);河北省研究生创新资助项目(CXZZSS2022031);河北省自然科学基金青年基金资助项目(D2021402035)

  • 中图分类号: X171.5

Antibacterial Mechanism of Algae and Its Metabolites as Antibiotic Substitutes and Their Application in Livestock and Poultry Breeding

    Corresponding author: Wang Qing, wangqing@hebeu.edu.cn
  • Fund Project:
  • 摘要: 抗生素在畜禽养殖业的快速、规模化发展中发挥了重要作用,同时也引发了严重的药物残留和细菌耐药性,由此众多国家相继发布饲料中“禁抗”的法律法规,开发利用抗生素替代品也逐渐成为研究热点。藻类生活在广泛的生态系统中,可以合成不同类别的具有抗菌和抗氧化能力的高活性生物代谢物,很有希望作为一种新型的、生态友好的抗生素替代物应用于畜禽养殖。本文就藻类及其代谢物的生物学特性和藻类在家禽和猪养殖中的应用进行综述,旨在为藻类在畜禽养殖中的应用提供参考。
  • 加载中
  • 隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5):20-34

    Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production:An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5):20-34(in Chinese)

    李厚禹, 邵振鲁, 李碧菡, 等. 畜禽环境中抗生素的去除及其风险评估[J]. 生态毒理学报, 2020, 15(1):79-93

    Li H Y, Shao Z L, Li B H, et al. The removal and risk assessment of antibiotics in livestock environment[J]. Asian Journal of Ecotoxicology, 2020, 15(1):79-93(in Chinese)

    田志梅, 崔艺燕, 杜宗亮, 等. 抗生素替代物在畜禽养殖中的研究及应用进展[J]. 动物营养学报, 2020, 32(4):1516-1525

    Tian Z M, Cui Y Y, Du Z L, et al. Advances in researches and applications of antibiotic alternatives in livestock breeding[J]. Chinese Journal of Animal Nutrition, 2020, 32(4):1516-1525(in Chinese)

    宣雄智, 李文嘉, 李绍钰, 等. 藻类在猪和鸡养殖生产中的应用研究进展[J]. 中国畜牧兽医, 2019, 46(11):3262-3269

    Xuan X Z, Li W J, Li S Y, et al. Advances in the application of algae in pig and chicken production[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(11):3262-3269(in Chinese)

    Holdt S L, Kraan S. Bioactive compounds in seaweed:Functional food applications and legislation[J]. Journal of Applied Phycology, 2011, 23(3):543-597
    Stengel D B, Connan S, Popper Z A. Algal chemodiversity and bioactivity:Sources of natural variability and implications for commercial application[J]. Biotechnology Advances, 2011, 29(5):483-501
    He Y, Yuan Q B, Mathieu J, et al. Antibiotic resistance genes from livestock waste:Occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3:4
    Bhowmick S, Mazumdar A, Moulick A, et al. Algal metabolites:An inevitable substitute for antibiotics[J]. Biotechnology Advances, 2020, 43:107571
    Silva A, Silva S A, Lourenço-Lopes C, et al. Antibacterial use of macroalgae compounds against foodborne pathogens[J]. Antibiotics, 2020, 9(10):E712
    Kini S, Divyashree M, Mani M K, et al. Algae and Cyanobacteria as a Source of Novel Bioactive Compounds for Biomedical Applications[M]//Advances in Cyanobacterial Biology. Amsterdam:Elsevier, 2020:173-194
    Blunt J W, Copp B R, Hu W P, et al. Marine natural products[J]. Natural Product Reports, 2007, 24(1):31-86
    Lin Q, Sun H H, Yao K, et al. The prevalence, antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready-to-eat foods[J]. Biomolecules, 2019, 9(10):E524
    Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters[J]. Cell, 2014, 157(3):539-548
    Makkar H P S, Tran G, Heuzé V, et al. Seaweeds for livestock diets:A review[J]. Animal Feed Science and Technology, 2016, 212:1-17
    任淑静, 罗静如, Maria Garcia Suares. 海藻提取物有利于提高肉鸡生产性能[J]. 国外畜牧学(猪与禽), 2020, 40(11):86-89 Ren S J, Luo J R, Suares M G. Patented seaweed technology helps immunity and production[J]. Animal Science Abroad (Pigs and Poultry), 2020, 40(11):86-89(in Chinese)
    任淑静, Maria Garcia Suarez. 海洋巨藻多糖的免疫调节活性[J]. 国外畜牧学(猪与禽), 2020, 40(12):70-72 Ren S J, Suarez M G. Immunomodulating activities of macroalgae[J]. Animal Science Abroad (Pigs and Poultry), 2020, 40(12):70-72(in Chinese)
    Vieira E F, Soares C, Machado S, et al. Seaweeds from the Portuguese coast as a source of proteinaceous material:Total and free amino acid composition profile[J]. Food Chemistry, 2018, 269:264-275
    Cherry P, Yadav S, Strain C R, et al. Prebiotics from seaweeds:An ocean of opportunity?[J]. Marine Drugs, 2019, 17(6):E327
    Pérez M J, Falqué E, Domínguez H. Antimicrobial action of compounds from marine seaweed[J]. Marine Drugs, 2016, 14(3):52
    Liu M, Hansen P E, Lin X K. Bromophenols in marine algae and their bioactivities[J]. Marine Drugs, 2011, 9(7):1273-1292
    Kamei Y, Isnansetyo A. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga[J]. International Journal of Antimicrobial Agents, 2003, 21(1):71-74
    Wei Y X, Liu Q, Xu C J, et al. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii[J]. Journal of Aquatic Food Product Technology, 2016, 25(3):323-333
    Lee D S, Kang M S, Hwang H J, et al. Synergistic effect between dieckol from Ecklonia stolonifera and β -lactams against methicillin-resistant Staphylococcus aureus[J]. Biotechnology and Bioprocess Engineering, 2008, 13(6):758-764
    Nagayama K, Iwamura Y, Shibata T, et al. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome[J]. The Journal of Antimicrobial Chemotherapy, 2002, 50(6):889-893
    Thomas N V, Kim S K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae[J]. Environmental Toxicology and Pharmacology, 2011, 32(3):325-335
    Hussain M A, Dawson C O. Economic impact of food safety outbreaks on food businesses[J]. Foods, 2013, 2(4):585-589
    Bumunang E W, McAllister T A, Zaheer R, et al. Characterization of non-O157Escherichia coli from cattle faecal samples in the north-west Province of South Africa[J]. Microorganisms, 2019, 7(8):E272
    Moraes J O, Cruz E A, Souza E G F, et al. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration[J]. International Journal of Food Microbiology, 2018, 281:90-100
    He F, Yang Y, Yang G, et al. Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03[J]. Food Control, 2010, 21(9):1257-1262
    Vishwakarma J, Vavilala S L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii[J]. Journal of Applied Microbiology, 2019, 127(4):1004-1017
    Abou Zeid A H, Aboutabl E A, Sleem A A, et al. Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities[J]. Carbohydrate Polymers, 2014, 113:62-66
    Kadam S U, O'Donnell C P, Rai D K, et al. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea:Ultrasound assisted extraction, characterization and bioactivity[J]. Marine Drugs, 2015, 13(7):4270-4280
    Sellimi S, Maalej H, Rekik D M, et al. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed[J]. International Journal of Biological Macromolecules, 2018, 119:633-644
    Besednova N N, Zaporozhets T S, Somova L M, et al. Review:Prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori[J]. Helicobacter, 2015, 20(2):89-97
    Pangestuti R, Kim S K. Seaweed Proteins, Peptides, and Amino Acids[M]//Seaweed Sustainability. Amsterdam:Elsevier, 2015:125-140
    Lordan S, Ross R P, Stanton C. Marine bioactives as functional food ingredients:Potential to reduce the incidence of chronic diseases[J]. Marine Drugs, 2011, 9(6):1056-1100
    Makkar H P S, Tran G, Heuzé V, et al. Seaweeds for livestock diets:A review[J]. Animal Feed Science and Technology, 2016, 212:1-17
    Admassu H, Gasmalla M A A, Yang R J, et al. Bioactive peptides derived from seaweed protein and their health benefits:Antihypertensive, antioxidant, and antidiabetic properties[J]. Journal of Food Science, 2018, 83(1):6-16
    El Shafay S M, Ali S S, El-Sheekh M M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria[J]. The Egyptian Journal of Aquatic Research, 2016, 42(1):65-74
    Anjali K P, Sangeetha B M, Devi G, et al. Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum):The compound characterization and functional applications in medicine-a comparative study[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 200:111622
    Ren D C, Bedzyk L A, Ye R W, et al. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli[J]. Biotechnology and Bioengineering, 2004, 88(5):630-642
    Karpiński T M, Adamczak A. Fucoxanthin-An antibacterial carotenoid[J]. Antioxidants, 2019, 8(8):239
    Volk R B, Furkert F H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth[J]. Microbiological Research, 2006, 161(2):180-186
    Zheng L, Chen H M, Han X T, et al. Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve[J]. World Journal of Microbiology and Biotechnology, 2005, 21(2):201-206
    Wächter G A, Franzblau S G, Montenegro G, et al. Inhibition of Mycobacterium tuberculosis growth by saringosterol from Lessonia nigrescens[J]. Journal of Natural Products, 2001, 64(11):1463-1464
    Morais T, Inácio A, Coutinho T, et al. Seaweed potential in the animal feed:A review[J]. Journal of Marine Science and Engineering, 2020, 8(8):559
    Gurusamy S, Kulanthaisamy M R, Hari D G, et al. Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterilas for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens[J]. Journal of Photochemistry and Photobiology B, Biology, 2019, 193:118-130
    Sugiharto S, Yudiarti T, Isroli I, et al. Effect of feeding duration of Spirulina platensis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks[J]. South African Journal of Animal Science, 2018, 48(1):98
    El-Ghany W A A. Microalgae in poultry field:A comprehensive perspectives[J]. Advances in Animal and Veterinary Sciences, 2020, 8(9):888-897
    Kang H K, Salim H M, Akter N, et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens[J]. Journal of Applied Poultry Research, 2013, 22(1):100-108
    Roque B M, Salwen J K, Kinley R, et al. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent[J]. Journal of Cleaner Production, 2019, 234:132-138
    Shanmugapriya B, Babu S S. Research article dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks[J]. International Journal of Recent Scientific Research, 2015, 6(2):2650-2653
    Namra M M M, Ragab M S, Aly M M M, et al. Effect of dietary supplementation of algae meal (Spirulina platensis) as growth promoter on performance of broiler chickens[J]. Egyptian Poultry Science Journal, 2018, 38(2):375-389
    夏伦斌, 黄燕, 左瑞华, 等. 海藻多糖对肉鸡抗氧化性能及存活率的影响[J]. 畜牧与饲料科学, 2016, 37(4):24-26

    Xia L B, Huang Y, Zuo R H, et al. Effects of dietary supplementation of algal polysaccharide on antioxidant capacity and surviving rate of broilers[J]. Animal Husbandry and Feed Science, 2016, 37(4):24-26(in Chinese)

    Wang J, Yue H Y, Wu S G, et al. Nutritional modulation of health, egg quality and environmental pollution of the layers[J]. Animal Nutrition, 2017, 3(2):91-96
    Ehr I J, Persia M E, Bobeck E A. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed[J]. Poultry Science, 2017, 96(6):1791-1799
    Tellez G, Pixley C, Wolfenden R E, et al. Probiotics/direct fed microbials for Salmonella control in poultry[J]. Food Research International, 2012, 45(2):628-633
    Kulshreshtha G, Rathgeber B, Stratton G, et al. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens[J]. Poultry Science, 2014, 93(12):2991-3001
    McCauley J I, Labeeuw L, Jaramillo-Madrid A C, et al. Management of enteric methanogenesis in ruminants by algal-derived feed additives[J]. Current Pollution Reports, 2020, 6(3):188-205
    Yan L, Lim S U, Kim I H. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs[J]. Asian-Australasian Journal of Animal Sciences, 2012, 25(12):1742-1747
    Dierick N, Ovyn A, de Smet S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs[J]. Journal of the Science of Food and Agriculture, 2009, 89(4):584-594
    Michiels J, Skrivanova E, Missotten J, et al. Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets:Effects on performance, gut bacteria and morphology and plasma oxidative status[J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(6):1101-1111
    Dierick N, Ovyn A, de Smet S. In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets[J]. Livestock Science, 2010, 133(1-3):154-156
    Ø verland M, Mydland L, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals[J]. Journal of the Science of Food and Agriculture, 2018, 99:13-24
    Morais T, Inácio A, Coutinho T, et al. Seaweed potential in the animal feed:A review[J]. Journal of Marine Science and Engineering, 2020, 8(8):559
    Baeza E, Chartrin P, Lessire M, et al. Is it possible to increase n-3 fatty acid content of meat without affecting its technological and/or sensory quality and the growing performance of chickens?[J]. British Poultry Science, 2015, 56(5):543-550
    Jamil A, Akanda M, Rahman M, et al. Prebiotic competence of spirulina on the production performance of broiler chickens[J]. Journal of Advanced Veterinary and Animal Research, 2015, 2(3):304
    Evans F D, Critchley A T. Seaweeds for animal production use[J]. Journal of Applied Phycology, 2014, 26(2):891-899
    Kostik V, Gjorgjeska B, Bauer B, et al. Production of shell eggs enriched with n-3 fatty acids[J]. IOSR Journal of Pharmacy, 2015, 5(8):48-51
    王述柏, 贾玉辉, 王利华, 等. 浒苔添加水平对蛋鸡产蛋性能、蛋品质、免疫功能及粪便微生物区系的影响[J]. 动物营养学报, 2013, 25(6):1346-1352

    Wang S B, Jia Y H, Wang L H, et al. Enteromorpha prolifera supplemental level:Effects on laying performance, egg quality, immune function and microflora in feces of laying hens[J]. Chinese Journal of Animal Nutrition, 2013, 25(6):1346-1352(in Chinese)

    Al-Harthi M A, El-Deek A A. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens[J]. Italian Journal of Animal Science, 2012, 11(4):e64
    Rizk Y S. Effect of dietary green tea and dried seaweed on productive and physiological performance of laying hens during late phase of production[J]. Egyptian Poultry Science Journal, 2017, 37(3):685-706
    Choi Y, Lee E C, Na Y, et al. Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens[J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(10):1654-1659
    Katayama M, Fukuda T, Okamura T, et al. Effect of dietary addition of seaweed and licorice on the immune performance of pigs[J]. Nihon Chikusan Gakkaiho, 2011, 82(2):274-281
  • 加载中
计量
  • 文章访问数:  2725
  • HTML全文浏览数:  2725
  • PDF下载数:  179
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-07
张晓婷, 汪庆, 李思敏, 翟文超, 李双双, 魏贺红, 刘长振, 王雪宁, 许新月. 藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用[J]. 生态毒理学报, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
引用本文: 张晓婷, 汪庆, 李思敏, 翟文超, 李双双, 魏贺红, 刘长振, 王雪宁, 许新月. 藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用[J]. 生态毒理学报, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
Zhang Xiaoting, Wang Qing, Li Simin, Zhai Wenchao, Li Shuangshuang, Wei Hehong, Liu Changzhen, Wang Xuening, Xu Xinyue. Antibacterial Mechanism of Algae and Its Metabolites as Antibiotic Substitutes and Their Application in Livestock and Poultry Breeding[J]. Asian journal of ecotoxicology, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002
Citation: Zhang Xiaoting, Wang Qing, Li Simin, Zhai Wenchao, Li Shuangshuang, Wei Hehong, Liu Changzhen, Wang Xuening, Xu Xinyue. Antibacterial Mechanism of Algae and Its Metabolites as Antibiotic Substitutes and Their Application in Livestock and Poultry Breeding[J]. Asian journal of ecotoxicology, 2022, 17(5): 1-12. doi: 10.7524/AJE.1673-5897.20220207002

藻类及其代谢物作为抗生素替代物的抑菌机制及在畜禽养殖中的应用

    通讯作者: 汪庆, E-mail: wangqing@hebeu.edu.cn
    作者简介: 张晓婷(1997-),女,硕士研究生,研究方向为抗生素和耐药基因的传播扩散和去除研究,E-mail:xtz0418@126.com
  • 1. 河北工程大学能源与环境工程学院, 河北省大气污染成因与影响重点实验室, 邯郸 056038;
  • 2. 山东省固体废物和危险化学品污染防治中心, 济南 250117
基金项目:

国家自然科学基金面上项目(42077393,52070065);国家重点研发计划(2021YFC1910601);河北省研究生创新资助项目(CXZZSS2022031);河北省自然科学基金青年基金资助项目(D2021402035)

摘要: 抗生素在畜禽养殖业的快速、规模化发展中发挥了重要作用,同时也引发了严重的药物残留和细菌耐药性,由此众多国家相继发布饲料中“禁抗”的法律法规,开发利用抗生素替代品也逐渐成为研究热点。藻类生活在广泛的生态系统中,可以合成不同类别的具有抗菌和抗氧化能力的高活性生物代谢物,很有希望作为一种新型的、生态友好的抗生素替代物应用于畜禽养殖。本文就藻类及其代谢物的生物学特性和藻类在家禽和猪养殖中的应用进行综述,旨在为藻类在畜禽养殖中的应用提供参考。

English Abstract

参考文献 (74)

返回顶部

目录

/

返回文章
返回