稀有鮈鲫脑中KISS/GPR54系统介导MT对性腺发育影响研究
Effect of 17α-methyltestosterone on Gonad Development Mediated through KISS/GPR54 System in Brain of Gobiocypris rarus
-
摘要: 17α-甲基睾酮(17α-methyltestosterone,MT)是一种人工合成的具有雄激素效应的环境内分泌干扰物。为了探究MT通过KISS/GPR54系统及其相关miRNAs干扰稀有鮈鲫性腺成熟作用机制,采用0、25、50和100 ng·L-1 MT暴露稀有鮈鲫7、14和21 d。石蜡组织切片(H-E染色)观察MT对稀有鮈鲫性腺组织学的影响;实时荧光定量PCR (qRT-PCR)检测雌、雄鱼脑中kiss1、kiss2、GPR54α和GPR54β基因mRNA的表达量以及kiss1相关miRNAs (miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p)的表达量。结果显示,随着暴露时间的延长和暴露浓度的升高,性腺退化的程度逐渐严重,成熟卵细胞和成熟精子比例逐渐降低。MT处理雌鱼7 d,各处理组GPR54β基因表达量均显著降低。处理14 d,高浓度组kiss1、kiss2、GPR54α和GPR54β基因mRNA表达量均显著低于对照组。暴露雌鱼21 d,各处理组kiss1和GPR54α表达量均显著降低。MT处理雄鱼7 d,中浓度组kiss1基因表达量显著降低,高浓度组kiss1基因表达量显著升高,MT (25、50和100 ng·L-1)处理组kiss2基因表达量均显著升高。MT处理雄鱼14 d,kiss2基因表达量均显著降低。MT处理21 d,3个处理组雄鱼kiss1表达量均显著升高,GPR54β表达量则显著降低。低浓度MT处理雌鱼7 d,脑中miR-25-3p、miR-92a-3p、miR-137-3p和miR-199-3p表达显著升高,kiss1基因表达显著降低,呈负相关。MT处理雄鱼21 d,各处理组miR-92a-3p和miR-137-3p表达量均降低,与kiss1表达量呈负相关。MT通过干扰稀有鮈鲫脑中miR-25-3p、miR-92a-3p、miR-137-3p、miR-199-3p和miR-324-3p表达量,调控kiss1基因mRNA表达,进而干扰下丘脑-垂体-性腺轴上游刺激因子KISS/GPR54系统,导致类固醇激素分泌异常,性腺发育受阻。
-
关键词:
- 17α-甲基睾酮 /
- 稀有鮈鲫 /
- KISS/GPR54系统 /
- miRNAs
Abstract: 17α-methyltestosterone (MT) is an artificially synthesized environmental endocrine disruptor with androgen effect. To explore the interference of MT through the KISS/GPR54 system and its related miRNAs of Gobiocypris rarus, G. rarus were exposed to 0, 25, 50 and 100 ng·L-1 of MT for 7, 14 and 21 d. The tissue paraffin slice (H-E staining) was used to study the effect of MT on the gonads tissues. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect the expression of kiss1, kiss2, GPR54α, GPR54β gene mRNA and miRNAs (miR-25-3p, miR-92a-3p, miR-137-3p, miR-199-3p and miR-324-3p) in the brain of female and male fish. The results show that MT can lead to the involution of the gonads and the reduction of mature eggs and sperm in the G. rarus in a time- and dose-dependent manner. For female G. rarus, the expression of GPR54β gene was decreased significantly of MT treatment for 7 d. The kiss1, kiss2, GPR54α and GPR54β expressions in MT (100 ng·L-1) group were decreased significantly for 14 d. MT (25, 50 and 100 ng·L-1) exposure for 21 d, the mRNA expressions of kiss1 and GPR54α were decreased significantly of female fish. For male G. rarus, the expression of kiss1 gene in MT (50 ng·L-1) group was decreased significantly, but its expression was increased significantly in 100 ng·L-1 group for 7 d. The mRNA expression of kiss2 was increased significantly in groups of MT (25, 50 and 100 ng·L-1) for 7 d. In all the three MT exposure groups, kiss2 gene expression was decreased significantly for 14 d. After MT treatment for 21 d, the expression of kiss1 in male fish in the three treatment groups was significantly increased, while the expression of GPR54β was significantly decreased. The miR-25-3p, miR-92a-3p, miR-137-3p and miR-199-3p expressions were increased in females and they were negatively correlated with the expression of kiss1 in 25 ng·L-1 MT group following 7 d exposure. The miR-92a-3p and miR-137-3p expression were decreased in males following 21 d MT exposure, and they were negatively correlated with the kiss1 expression. The present study suggests that MT regulates the expression of the kiss1 by interfering with the expression of miR-25-3p, miR-92a-3p, miR-137-3p, miR-199-3p and miR-324-3p in the brain of G. rarus. In turn, it interferes with the KISS/GPR54 system, an upstream stimulator of the hypothalamic-pituitary-gonad axis, resulting in abnormal secretion of steroid hormones and gonad development.-
Key words:
- 17α-methyltestosterone /
- Gobiocypris rarus /
- KISS/GPR54 system /
- miRNAs
-
-
黄苑, 张维, 王瑞国, 等. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1):60-81 Huang Y, Zhang W, Wang R G, et al. Advances on pollution status and endocrine disrupting effects of bisphenols[J]. Asian Journal of Ecotoxicology, 2022, 17(1):60-81(in Chinese)
Wang S, Zhu Z L, He J F, et al. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China:Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus[J]. Environmental Pollution, 2018, 243(Pt A):103-114 Liu S, Chen H, Zhou G J, et al. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. The Science of the Total Environment, 2015, 536:99-107 王梦圆, 张龙飞, 汤云瑜, 等. 几种水生模式生物在持久性有机污染物毒理学评价中的研究进展[J]. 环境化学, 2021, 40(5):1361-1378 Wang M Y, Zhang L F, Tang Y Y, et al. Research progress of several aquatic biological models in toxicological evaluation of persistent organic pollutants[J]. Environmental Chemistry, 2021, 40(5):1361-1378(in Chinese)
刘少贞, 杨琼, 周俊亮, 等. 17α-甲基睾酮对稀有鮈鲫肝脏脂质代谢的影响[J]. 生态毒理学报, 2021, 16(5):87-101 Liu S Z, Yang Q, Zhou J L, et al. Effects of 17α-methyltestosterone on lipid metabolism in liver of Gobiocypris rarus[J]. Asian Journal of Ecotoxicology, 2021, 16(5):87-101(in Chinese)
侯丽萍, 何骏驹, 冯子懿, 等. 甲基睾酮对雌斑马鱼内分泌干扰效应的研究[J]. 湖南农业科学, 2017(3):70-73 Hou L P, He J J, Feng Z Y, et al. Endocrine disruption of methyltestosterone on zebra fish[J]. Hunan Agricultural Sciences, 2017 (3):70-73(in Chinese)
Orn S, Svenson A, Viktor T, et al. Male-biased sex ratios and vitellogenin induction in zebrafish exposed to effluent water from a Swedish pulp mill[J]. Archives of Environmental Contamination and Toxicology, 2006, 51(3):445-451 周家辉, 杜金星, 姜鹏, 等. 17α-甲基睾酮对大口黑鲈生长及性腺发育的影响[J]. 中国水产科学, 2021, 28(9):1109-1117 Zhou J H, Du J X, Jiang P, et al. Effects of 17α-methyltestosterone on growth and sex differentiation in largemouth bass (Micropterus salmoides)[J]. Journal of Fishery Sciences of China, 2021, 28(9):1109-1117(in Chinese)
刘少贞, 朱玉婷, 赵凌瑞. 17α-甲基睾酮对麦穗鱼性腺组织学的影响[J]. 山西农业大学学报:自然科学版, 2016, 36(2):147-152 Liu S Z, Zhu Y T, Zhao L R. Effect of MT on gonadal histology of Pseudorasbora parva[J]. Journal of Shanxi Agricultural University:Natural Science Edition, 2016, 36(2):147-152(in Chinese)
Shi Y, Zhang Y, Li S S, et al. Molecular identification of the Kiss2/Kiss1ra system and its potential function during 17alpha-methyltestosterone-induced sex reversal in the orange-spotted grouper, Epinephelus coioides[J]. Biology of Reproduction, 2010, 83(1):63-74 甄婗, 吕拥芬, 李嫔. TTF1在雌鼠下丘脑的分布及其与KiSS1和GnRH表达的关系[J]. 上海交通大学学报:医学版, 2018, 38(6):598-604 Zhen N, Lv Y F, Li P. Expression of TTF1 in hypothalamus of female rats and its relationship with GnRH and KiSS1[J]. Journal of Shanghai Jiao Tong University:Medical Science, 2018, 38(6):598-604(in Chinese)
d'Anglemont de Tassigny X, Fagg L A, Dixon J P, et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25):10714-10719 Funes S, Hedrick J A, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system[J]. Biochemical and Biophysical Research Communications, 2003, 312(4):1357-1363 Li S S, Zhang Y, Liu Y, et al. Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus)[J]. The Journal of Endocrinology, 2009, 201(3):407-418 Migaud H, Ismail R, Cowan M, et al. Kisspeptin and seasonal control of reproduction in male European sea bass (Dicentrarchus labrax)[J]. General and Comparative Endocrinology, 2012, 179(3):384-399 李文笙, 王东方. 鱼类microRNA研究进展[J]. 水产学报, 2017, 41(4):628-639 Sayed D, Abdellatif M. microRNAs in development and disease[J]. Physiological Reviews, 2011, 91(3):827-887 Liu S Z, Yang Q, Chen Y, et al. Integrated analysis of mRNA- and miRNA-seq in the ovary of rare minnow Gobiocypris rarus in response to 17α-methyltestosterone[J]. Frontiers in Genetics, 2021, 12:695699 Garaffo G, Conte D, Provero P, et al. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and-200, are required for the development of the olfactory and GnRH system[J]. Molecular and Cellular Neurosciences, 2015, 68:103-119 Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty[J]. Nature Neuroscience, 2016, 19(6):835-844 陈佳贤, 李晓宁, 王欣, 等. miR-92a-3p和miR-25-3p海绵上调Kiss1并影响雌性小鼠的青春期启动及动情周期[J]. 中国生物化学与分子生物学报, 2021, 37(4):543-550 Chen J X, Li X N, Wang X, et al. miR-92a-3p and miR-25-3p sponges up-regulate Kiss1 and affect the onset of puberty and estrous cycle of female mice[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(4):543-550(in Chinese)
唐家彦, 黄娟, 黄连红, 等. 血清miR-137在中枢性性早熟女童中的临床检测意义[J]. 实用医学杂志, 2016, 32(15):2500-2503 Tang J Y, Huang J, Huang L H, et al. The clinical detection significance of serum miR-137 in central precocious puberty girls[J]. The Journal of Practical Medicine, 2016, 32(15):2500-2503(in Chinese)
Li X N, Xiao J H, Li K, et al. miR-199-3p modulates the onset of puberty in rodents probably by regulating the expression of Kiss1 via the p38 MAPK pathway[J]. Molecular and Cellular Endocrinology, 2020, 518:110994 Romero-Ruiz A, Avendaño M S, Dominguez F, et al. Deregulation of miR-324/KISS1/kisspeptin in early ectopic pregnancy:Mechanistic findings with clinical and diagnostic implications[J]. American Journal of Obstetrics and Gynecology, 2019, 220(5):480.e1-480480.e17 王剑伟, 曹文宣. 中国本土鱼类模式生物稀有鮈鲫研究应用的历史与现状[J]. 生态毒理学报, 2017, 12(2):20-33 Wang J W, Cao W X. Gobiocypris rarus as a Chinese native model organism:History and current situation[J]. Asian Journal of Ecotoxicology, 2017, 12(2):20-33(in Chinese)
王绿平, 张京佶, 赵华清. 稀有鮈鲫作为鱼类胚胎急性毒性试验受试鱼种的敏感性研究[J]. 生态毒理学报, 2021, 16(5):102-112 Wang L P, Zhang J J, Zhao H Q. Sensitivity of Chinese rare minnows (Gobiocypris rarus) for fish embryo acute toxicity test[J]. Asian Journal of Ecotoxicology, 2021, 16(5):102-112(in Chinese)
杨彦平. 稀有鮈鲫Kiss/GPR54基因克隆及17α-乙炔雌二醇暴露对其表达的影响[D]. 杨凌:西北农林科技大学, 2015:20 Yang Y P. Molecular identification of Kiss/GPR54 and function analysis with mRNA expression profiles exposure to 17α-ethinylestradiol in rare minnow Gobiocypris rarus[D]. Yangling:Northwest A & F University, 2015 :20(in Chinese)
Qin F, Wang L H, Liu S Z, et al. Characterization of reference genes in rare minnow, Gobiocypris rarus (Actinopterygii:Cypriniformes:Cyprinidae), in early postembryonic development and in response to EDCs treatment[J]. Acta Ichthyologica et Piscatoria, 2013, 43(2):127-138 吴建阳, 何冰, 杜玉洁, 等. 利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J]. 现代农业科技, 2017(5):278-281 Wu J Y, He B, Du Y J, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017 (5):278-281(in Chinese)
史熊杰, 刘春生, 余珂, 等. 环境内分泌干扰物毒理学研究[J]. 化学进展, 2009, 21(S1):340-349 Shi X J, Liu C S, Yu K, et al. Toxicological research on environmental endocrine disruptors[J]. Progress in Chemistry, 2009, 21(S1):340-349(in Chinese)
姚汶励, 姜鹏, 白俊杰. 17α-甲基睾酮对草鱼性腺发育及性类固醇激素水平的影响[J]. 水产学报, 2019, 43(4):801-806 , 809, 807 Yao W L, Jiang P, Bai J J. Effects of 17α-methyltestosterone on gonadal development and hormone levels in grass carp (Ctenopharyngodon idella)[J]. Journal of Fisheries of China, 2019, 43(4):801-806, 809, 807(in Chinese)
Zou Y X, Wu Z H, Fan Z F, et al. Analyses of mRNA-seq and miRNA-seq of the brain reveal the sex differences of gene expression and regulation before and during gonadal differentiation in 17β-estradiol or 17α-methyltestosterone-induced olive flounder (Paralichthys olivaceus)[J]. Molecular Reproduction and Development, 2020, 87(1):78-90 Liu S Z, Wang L H, Qin F, et al. Gonadal development and transcript profiling of steroidogenic enzymes in response to 17α-methyltestosterone in the rare minnow Gobiocypris rarus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 143:223-232 Passini G, Sterzelecki F C, de Carvalho C V A, et al. 17α-methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation[J]. Theriogenology, 2018, 106:134-140 赖晓健, 彭帅, 张哲, 等. 甲基睾酮暴露对鳗鲡精巢发育的影响[J]. 水产科学, 2021, 40(6):900-904 Lai X J, Peng S, Zhang Z, et al. Testis development induced in Japanese eel Anguilla japonica by 17α-methyltestosterone exposure[J]. Fisheries Science, 2021, 40(6):900-904(in Chinese)
García-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system:Developmental roles and major regulatory actions[J]. Journal of Neuroendocrinology, 2012, 24(1):22-33 卓琦. Kisspeptin调控鱼类生殖内分泌的研究进展[J]. 动物学研究, 2013, 34(5):519-530 Zhuo Q. Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction[J]. Zoological Research, 2013, 34(5):519-530(in Chinese)
Shahjahan M, Motohashi E, Doi H, et al. Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season[J]. General and Comparative Endocrinology, 2010, 169(1):48-57 Han S K, Gottsch M L, Lee K J, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2005, 25(49):11349-11356 Costa D P, Sinervo B. Field physiology:Physiological insights from animals in nature[J]. Annual Review of Physiology, 2004, 66:209-238 王滨, 柳学周, 徐永江, 等. Kisspeptin对鱼类生殖轴的调控机制研究[J]. 渔业科学进展, 2018, 39(4):173-184 Wang B, Liu X Z, Xu Y J, et al. Regulatory mechanisms of kisspeptin on the reproductive axis in fish[J]. Progress in Fishery Sciences, 2018, 39(4):173-184(in Chinese)
张浩. 克氏双锯鱼kisspeptin/GPR54系统的分子鉴定和表达分析[D]. 海口:海南大学, 2019:51 Zhang H. Molecular characterization and expression analysis of kisspeptin/GPR54 system in anemonefish, Amphiprion clarkii[D]. Haikou:Hainan University, 2019:51 (in Chinese)
Felip A, Zanuy S, Pineda R, et al. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals[J]. Molecular and Cellular Endocrinology, 2009, 312(1-2):61-71 Chang J P, Mar A, Wlasichuk M, et al. Kisspeptin-1 directly stimulates LH and GH secretion from goldfish pituitary cells in a Ca2+-dependent manner[J]. General and Comparative Endocrinology, 2012, 179(1):38-46 Servili A, Le Page Y, Leprince J, et al. Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish[J]. Endocrinology, 2011, 152(4):1527-1540 Kitahashi T, Ogawa S, Parhar I S. Cloning and expression of kiss2 in the zebrafish and medaka[J]. Endocrinology, 2009, 150(2):821-831 Shen L C, Hong X X, Liu Y, et al. The miR-25-3p/Sp1 pathway is dysregulated in ovarian endometriosis[J]. The Journal of International Medical Research, 2020, 48(4):300060520918437 Huang J H, Zhou Q H, Chen C C, et al. microRNA miR-92a-3p regulates breast cancer cell proliferation and metastasis via regulating B-cell translocation gene 2(BTG2)[J]. Bioengineered, 2021, 12(1):2033-2044 孙丹, 周文婷, 吴绪峰, 等. miR-92a-3p靶向LATS2对宫颈癌细胞的增殖、凋亡和侵袭的影响和分子机制[J]. 广西医科大学学报, 2020, 37(10):1784-1790 Sun D, Zhou W T, Wu X F, et al. Effect and molecular mechanism of miR-92a-3p targeting LATS2 on proliferation, apoptosis and invasion of cervical cancer cells[J]. Journal of Guangxi Medical University, 2020, 37(10):1784-1790(in Chinese)
Presslauer C, Bizuayehu T T, Razmi K, et al. See-Thru-Gonad zebrafish line:Developmental and functional validation[J]. Reproduction, 2016, 152(5):507-517 -

计量
- 文章访问数: 1755
- HTML全文浏览数: 1755
- PDF下载数: 99
- 施引文献: 0