饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展

易欣源, 曲鑫璐, 龙昕, 张立尖, 徐斌, 唐玉霖. 饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展[J]. 生态毒理学报, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
引用本文: 易欣源, 曲鑫璐, 龙昕, 张立尖, 徐斌, 唐玉霖. 饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展[J]. 生态毒理学报, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
Yi Xinyuan, Qu Xinlu, Long Xin, Zhang Lijian, Xu Bin, Tang Yulin. Research Progress on Chemical Properties, Transformation and Toxicity of Typical Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
Citation: Yi Xinyuan, Qu Xinlu, Long Xin, Zhang Lijian, Xu Bin, Tang Yulin. Research Progress on Chemical Properties, Transformation and Toxicity of Typical Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002

饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展

    作者简介: 易欣源(1999—),女,硕士研究生,研究方向为水处理理论与技术,E-mail: yixinyuan@tongji.edu.cn
    通讯作者: 唐玉霖, E-mail: tangtongji@126.com
  • 基金项目:

    上海市自然科学基金资助项目(21ZR1467300)

  • 中图分类号: X171.5

Research Progress on Chemical Properties, Transformation and Toxicity of Typical Disinfection Byproducts in Drinking Water

    Corresponding author: Tang Yulin, tangtongji@126.com
  • Fund Project:
  • 摘要: 消毒副产物是饮用水消毒过程中形成的产物,饮用水新国标(GB 5749—2022)更加关注消毒副产物指标,将三卤甲烷等6项消毒副产物指标从非常规指标调整到常规指标。本文总结分析了水质标准中重要的消毒副产物和新兴消毒副产物在化学及毒理方面的研究与进展,重点阐明了典型消毒副产物的化学特性、生成转化途径,梳理了化学结构与其毒性之间的关系。
  • 加载中
  • Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: A practical solution for organic contaminant control and primary disinfection[J]. Ozone: Science & Engineering, 2007, 29(4): 273-280
    Keysser C. National cancer institute carcinogenesis technical report series[J]. Toxicologic Pathology, 1976, 4: 17-19
    Dalvi A G I, Al-Rasheed R, Javeed M A. Haloacetic acids (HAAs) formation in desalination processes from disinfectants[J]. Desalination, 2000, 129(3): 261-271
    Tang Y L, Long X, Wu M Y, et al. Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018[J]. Separation and Purification Technology, 2020, 241: 116741
    Liu S G, Li Z L, Dong H Y, et al. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways[J]. Journal of Hazardous Materials, 2017, 321: 28-36
    Guan C T, Jiang J, Pang S Y, et al. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products[J]. Chemosphere, 2018, 208: 559-568
    Pan Y, Li W B, Li A M, et al. A new group of disinfection byproducts in drinking water: Trihalo-hydroxy-cyclopentene-diones[J]. Environmental Science & Technology, 2016, 50(14): 7344-7352
    Zhang H F, Zhang Y H, Shi Q, et al. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry[J]. Environmental Science & Technology, 2014, 48(6): 3112-3119
    Zhang H F, Zhang Y H, Shi Q, et al. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry[J]. Water Research, 2012, 46(16): 5197-5204
    Zhou W J, Lou L J, Zhu L F, et al. Formation and cytotoxicity of a new disinfection by-product (DBP) phenazine by chloramination of water containing diphenylamine[J]. Journal of Environmental Sciences (China), 2012, 24(7): 1217-1224
    Chaukura N, Marais S, Moyo W, et al. Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water—A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103659
    Sun G Y, Yuan J, Zhang Z W, et al. Research progress on the precursors and formation mechanisms of typical N-DBPs in drinking water[J]. Desalination and Water Treatment, 2018, 129: 325-331
    Yang X, Fan C, Shang C, et al. Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds[J]. Water Research, 2010, 44(9): 2691-2702
    Pontie M, Buisson H, Diawara C K, et al. Studies of halide ions mass transfer in nanofiltration—Application to selective defluorination of brackish drinking water[J]. Desalination, 2003, 157(1-3): 127-134
    Westerhoff P, Mash H. Dissolved organic nitrogen in drinking water supplies: A review[J]. Journal of Water Supply: Research and Technology - AQUA, 2002, 51(8): 415-448
    Ye Z, Liu W J, Sun W J, et al. Role of ammonia on haloacetonitriles and halonitromethanes formation during ultraviolet irradiation followed by chlorination/chloramination[J]. Chemical Engineering Journal, 2018, 337: 275-281
    Shan J H, Hu J, Kaplan-Bekaroglu S S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars[J]. Chemosphere, 2012, 86(4): 323-328
    Choi J H, Valentine R L. N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine[J]. Environmental Science & Technology, 2003, 37(21): 4871-4876
    Choi J, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product[J]. Water Research, 2002, 36(4): 817-824
    Kanan A, Karanfil T. Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests[J]. The Science of the Total Environment, 2020, 744: 140987
    Zhang Y, Han X M, Niu Z G. Health risk assessment of haloacetonitriles in drinking water based on internal dose[J]. Environmental Pollution, 2018, 236: 899-906
    Kosaka K, Ohkubo K, Akiba M. Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan[J]. Water Research, 2016, 106: 470-476
    Chu W H, Gao N Y, Deng Y. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid[J]. Journal of Hazardous Materials, 2010, 173(1-3): 82-86
    World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda[R]. Geneva: World Health Organization, 2022
    Woo Y T, Lai D, McLain J, et al. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products[J]. Environmental Health Perspectives, 2002, 110(Suppl 1): 75-87
    Bellar T A, Lichtenberg J J, Kroner R C. The occurrence of organohalides in chlorinated drinking waters[J]. Journal - American Water Works Association, 1974, 66(12): 703-706
    Rahman M B, Cowie C, Driscoll T, et al. Colon and rectal cancer incidence and water trihalomethane concentrations in New South Wales, Australia[J]. BMC Cancer, 2014, 14: 445
    Wagner E D, Plewa M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76
    Bond T, Goslan E H, Parsons S A, et al. Treatment of disinfection by-product precursors[J]. Environmental Technology, 2011, 32(1-2): 1-25
    李大鹏, 黄强, 朱贺振. 黄河原水中消毒副产物前体物的组成特征及其化学预氧化处理效果对比[J]. 环境科学学报, 2016, 36(3): 827-833

    Li D P, Huang Q, Zhu H Z. Composition of disinfection byproducts precursors in the Yellow River raw water and comparison of different pre-oxidation treatments[J]. Acta Scientiae Circumstantiae, 2016, 36(3): 827-833(in Chinese)

    Zhang X R, Minear R A. Decomposition of trihaloacetic acids and formation of the corresponding trihalomethanes in drinking water[J]. Water Research, 2002, 36(14): 3665-3673
    Ge R, Yang S, Kramer P M, et al. The effect of dichloroacetic acid and trichloroacetic acid on DNA methylation and cell proliferation in B6C3F1 mice[J]. Journal of Biochemical and Molecular Toxicology, 2001, 15(2): 100-106
    Ghadimkhani A, Zhang W, Marhaba T. Ceramic membrane defouling (cleaning) by air nano bubbles[J]. Chemosphere, 2016, 146: 379-384
    Marsà A, Cortés C, Hernández A, et al. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells[J]. Toxicology and Applied Pharmacology, 2018, 347: 70-78
    Holmes B E, Smeester L, Fry R C, et al. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor[J]. Chemosphere, 2017, 187: 114-122
    Qi W X, Zhang H, Hu C Z, et al. Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation[J]. The Science of the Total Environment, 2018, 610-611: 1057-1064
    毛玉琴, 应海儿, 杨宏伟. 不同净水工艺对含溴水体消毒副产物生成势的影响[J]. 中国给水排水, 2020, 36(5): 1-6

    Mao Y Q, Ying H E, Yang H W. Influence of different water purification processes on disinfection by-products formation potential of bromide-containing water[J]. China Water & Wastewater, 2020, 36(5): 1-6(in Chinese)

    Priestley C C, Green R M, Fellows M D, et al. Anomalous genotoxic responses induced in mouse lymphoma L5178Y cells by potassium bromate[J]. Toxicology, 2010, 267(1-3): 45-53
    Liu D M, Wang Z W, Zhu Q, et al. Drinking water toxicity study of the environmental contaminant––Bromate[J]. Regulatory Toxicology and Pharmacology, 2015, 73(3): 802-810
    Von G U. Ozonation of drinking water: Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine[J]. Water Research, 2003, 37(7): 1469-1487
    吴悦, 吴纯德, 刘吕刚, 等. 含溴水臭氧化过程阴离子对溴酸盐生成的影响[J]. 环境科学, 2015, 36(9): 3292-3297

    Wu Y, Wu C D, Liu L G, et al. Effects of anions on bromate formation during ozonation of bromide-containing water[J]. Environmental Science, 2015, 36(9): 3292-3297(in Chinese)

    张维清, 邹惠仙. 三氯乙醛前驱物的筛选及其生成影响因素探讨[J]. 环境科学与技术, 2005, 28(2): 29-31

    , 116 Zhang W Q, Zou H X. Screening and generation of 3-chloroacetaldehyde precursor[J]. Environmental Science and Technology, 2005, 28(2): 29-31, 116(in Chinese)

    Hebert A, Forestier D, Lenes D, et al. Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health[J]. Water Research, 2010, 44(10): 3147-3165
    Yin D Q, Hu S Q, Jin H J, et al. Deriving freshwater quality criteria for 2,4,6-trichlorophenol for protection of aquatic life in China[J]. Chemosphere, 2003, 52(1): 67-73
    Tang Y L, Long X, Wu M Y, et al. Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018[J]. Separation and Purification Technology, 2020, 241: 116741
    胡建英, 谢国红, 相泽贵子. 4-壬基酚在氯消毒过程中的氧化途径[J]. 环境化学, 2002, 21(3): 254-258

    Hu J Y, Xie G H, Aizawa T. Aqueous chlorination pathways of 4-nonylphenol[J]. Environmental Chemistry, 2002, 21(3): 254-258(in Chinese)

    Wang W F, Ren S Y, Zhang H F, et al. Occurrence of nine nitrosamines and secondary amines in source water and drinking water: Potential of secondary amines as nitrosamine precursors[J]. Water Research, 2011, 45(16): 4930-4938
    Chung J, Ahn C H, Chen Z, et al. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor[J]. Chemosphere, 2008, 70(3): 516-520
    Schreiber I M, Mitch W A. Influence of the order of reagent addition on NDMA formation during chloramination[J]. Environmental Science & Technology, 2005, 39(10): 3811-3818
    Le Roux J, Gallard H, Croué J P. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation[J]. Water Research, 2011, 45(10): 3164-3174
    Liu X K, Lin Y F, Ruan T, et al. Identification of N-nitrosamines and nitrogenous heterocyclic byproducts during chloramination of aromatic secondary amine precursors[J]. Environmental Science & Technology, 2020, 54(20): 12949-12958
    Chen W H, Wang Y H, Hsu T H. The competitive effect of different chlorination disinfection methods and additional inorganic nitrogen on nitrosamine formation from aromatic and heterocyclic amine-containing pharmaceuticals[J]. Chemosphere, 2021, 267: 128922
    Shen R Q, Andrews S A. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection[J]. Water Research, 2011, 45(2): 944-952
    Chen W H, Yang Y C, Wang Y H, et al. Effect of molecular characteristics on the formation of nitrosamines during chlor(am)ination of phenylurea herbicides[J]. Environmental Science Processes & Impacts, 2015, 17(12): 2092-2100
    Mitch W A, Sedlak D L. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2004, 38(5): 1445-1454
    Verdugo E M, Krause C, Genskow K, et al. N-functionalized carbon nanotubes as a source and precursor of N-nitrosodimethylamine: Implications for environmental fate, transport, and toxicity[J]. Environmental Science & Technology, 2014, 48(16): 9279-9287
    Shah A D, Krasner S W, Lee C F, et al. Trade-offs in disinfection byproduct formation associated with precursor preoxidation for control of N-nitrosodimethylamine formation[J]. Environmental Science & Technology, 2012, 46(9): 4809-4818
    Liu Y D, Selbes M, Zeng C C, et al. Formation mechanism of NDMA from ranitidine, trimethylamine, and other tertiary amines during chloramination: A computational study[J]. Environmental Science & Technology, 2014, 48(15): 8653-8663
    Chen Z, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water[J]. Environmental Science & Technology, 2007, 41(17): 6059-6065
    Charrois J W A, Hrudey S E. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations[J]. Water Research, 2007, 41(3): 674-682
    Mitch W A, Sedlak D L. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination[J]. Environmental Science & Technology, 2002, 36(4): 588-595
    Spahr S, von Gunten U, Hofstetter T B. Carbon, hydrogen, and nitrogen isotope fractionation trends in N-nitrosodimethylamine reflect the formation pathway during chloramination of tertiary amines[J]. Environmental Science & Technology, 2017, 51(22): 13170-13179
    Spahr S, Cirpka O, Gunten U, et al. Formation of N-nitrosodimethylamine during chloramination of secondary and tertiary amines: Role of molecular oxygen and radical intermediates[J]. Environmental Science and Technology, 2016, 51(1): 280-290
    Muellner M G, Wagner E D, McCalla K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2): 645-651
    Lee J H, Na C Z, Ramirez R L, et al. Cyanogen chloride precursor analysis in chlorinated river water[J]. Environmental Science & Technology, 2006, 40(5): 1478-1484
    Reckhow D, Singer P, Malcolm R. Chlorination of humic materials: Byproduct formation and chemical interpretations[J]. Environmental Science & Technology, 1990, 24: 1655-1664
    Pedersen E J, Urbansky E, Mariñas B, et al. Formation of cyanogen chloride from the reaction of monochloramine with formaldehyde[J]. Environmental Science & Technology, 1999, 33(23): 4239-4249
    Na C Z, Olson T M. Mechanism and kinetics of cyanogen chloride formation from the chlorination of glycine[J]. Environmental Science & Technology, 2006, 40(5): 1469-1477
    Barbara C, Scully Frank E. Chloramines V: Products and implications of the chlorination of lysine in municipal wastewaters[J]. Environmental Science & Technology, 1997, 31(6): 1680-1685
    Fu J, Wang X M, Bai W L, et al. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination[J]. Chemosphere, 2017, 174: 110-116
    Richardson S D, Plewa M J, Wagner E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research[J]. Mutation Research, 2007, 636(1-3): 178-242
    Kundu B, Richardson S D, Granville C A, et al. Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: Structure-activity analysis and mutation spectra[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 554(1-2): 335-350
    Buerge I J, Kahle M, Buser H R, et al. Nicotine derivatives in wastewater and surface waters: Application as chemical markers for domestic wastewater[J]. Environmental Science & Technology, 2008, 42(17): 6354-6360
    Deng L, Wen L J, Dai W J, et al. Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection[J]. Environmental Science and Pollution Research International, 2018, 25(23): 23227-23235
    高乃云, 楚文海, 徐斌. 从生成机制谈饮用水中新型消毒副产物的控制策略[J]. 给水排水, 2017, 53(2): 1-5
    Hong H C, Qian L Y, Xiong Y J, et al. Use of multiple regression models to evaluate the formation of halonitromethane via chlorination/chloramination of water from Tai Lake and the Qiantang River, China[J]. Chemosphere, 2015, 119: 540-546
    Gan G J, Qiu L, Wu H, et al. Effect of nitrite on the formation of trichloronitromethane (TCNM) during chlorination of polyhydroxy-phenols and sugars[J]. Water, Air, & Soil Pollution, 2017, 228(6): 208
    Zhou X L, Zheng L L, Chen S Y, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China[J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822
    DeMarini D M, Shelton M L, Warren S H, et al. Glutathione S-transferase-mediated induction of GC→AT transitions by halomethanes in Salmonella[J]. Environmental and Molecular Mutagenesis, 1997, 30(4): 440-447
    Giller S, Le Curieux F, Erb F, et al. Comparative genotoxicity of halogenated acetic acids found in drinking water[J]. Mutagenesis, 1997, 12(5): 321-328
    Liu X Y, Chen L, Yang M T, et al. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review[J]. Water Research, 2020, 184: 116076
    Hu S Y, Gong T T, Xian Q M, et al. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination[J]. Water Research, 2018, 147: 254-263
    Kali S, Khan M, Ghaffar M S, et al. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review[J]. Environmental Pollution, 2021, 281: 116950
    Ewaid S H, Rabee A M, Al-Naseri S K. Carcinogenic risk assessment of trihalomethanes in major drinking water sources of Baghdad City[J]. Water Resources, 2018, 45(5): 803-812
    Mompremier R, Mariles Ó, Bravo J E, et al. Study of the variation of haloacetic acids in a simulated water distribution network[J]. Water Supply, 2019, 19(1): 88-96
    Zhang Z X, Zhu Q Y, Huang C, et al. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs: Binding interactions between aromatic DBPs and catalase play an important role[J]. Water Research, 2020, 170: 115283
    Liu J Q, Zhang X R, Li Y, et al. Phototransformation of halophenolic disinfection byproducts in receiving seawater: Kinetics, products, and toxicity[J]. Water Research, 2019, 150: 68-76
    Li Y, Jiang J Y, Li W X, et al. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii[J]. Chemosphere, 2020, 252: 126611
    Zhang Y M, Chu W H, Yao D C, et al. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity[J]. Journal of Environmental Sciences (China), 2017, 58: 322-330
    Tuppurainen K, Lötjönen S, Laatikainen R, et al. About the mutagenicity of chlorine-substituted furanones and halopropenals. A QSAR study using molecular orbital indices[J]. Mutation Research, 1991, 247(1): 97-102
    Wu Y, Wei W Z, Luo J Y, et al. Comparative toxicity analyses from different endpoints: Are new cyclic disinfection byproducts (DBPs) more toxic than common aliphatic DBPs?[J]. Environmental Science & Technology, 2022, 56(1): 194-207
    Qin L T, Zhang X, Chen Y H, et al. Predictive QSAR models for the toxicity of disinfection byproducts[J]. Molecules, 2017, 22(10): 1671
    Wang L, Chen B Y, Zhang T. Predicting hydrolysis kinetics for multiple types of halogenated disinfection byproducts via QSAR models[J]. Chemical Engineering Journal, 2018, 342: 372-385
  • 加载中
计量
  • 文章访问数:  4701
  • HTML全文浏览数:  4701
  • PDF下载数:  233
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-16
易欣源, 曲鑫璐, 龙昕, 张立尖, 徐斌, 唐玉霖. 饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展[J]. 生态毒理学报, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
引用本文: 易欣源, 曲鑫璐, 龙昕, 张立尖, 徐斌, 唐玉霖. 饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展[J]. 生态毒理学报, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
Yi Xinyuan, Qu Xinlu, Long Xin, Zhang Lijian, Xu Bin, Tang Yulin. Research Progress on Chemical Properties, Transformation and Toxicity of Typical Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002
Citation: Yi Xinyuan, Qu Xinlu, Long Xin, Zhang Lijian, Xu Bin, Tang Yulin. Research Progress on Chemical Properties, Transformation and Toxicity of Typical Disinfection Byproducts in Drinking Water[J]. Asian journal of ecotoxicology, 2023, 18(2): 97-110. doi: 10.7524/AJE.1673-5897.20220916002

饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展

    通讯作者: 唐玉霖, E-mail: tangtongji@126.com
    作者简介: 易欣源(1999—),女,硕士研究生,研究方向为水处理理论与技术,E-mail: yixinyuan@tongji.edu.cn
  • 1. 污染控制与资源化国家重点实验室, 同济大学环境科学与工程学院, 上海 200092;
  • 2. 水利部长三角城镇供水节水及水环境治理重点实验室, 上海 200092;
  • 3. 上海市供水调度监测中心, 上海 200082
基金项目:

上海市自然科学基金资助项目(21ZR1467300)

摘要: 消毒副产物是饮用水消毒过程中形成的产物,饮用水新国标(GB 5749—2022)更加关注消毒副产物指标,将三卤甲烷等6项消毒副产物指标从非常规指标调整到常规指标。本文总结分析了水质标准中重要的消毒副产物和新兴消毒副产物在化学及毒理方面的研究与进展,重点阐明了典型消毒副产物的化学特性、生成转化途径,梳理了化学结构与其毒性之间的关系。

English Abstract

参考文献 (93)

返回顶部

目录

/

返回文章
返回