环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展

孙哲诚, 梁川, 李乾永, 马正茁, 徐炎华, 刘志英. 环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展[J]. 生态毒理学报, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
引用本文: 孙哲诚, 梁川, 李乾永, 马正茁, 徐炎华, 刘志英. 环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展[J]. 生态毒理学报, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
Sun Zhecheng, Liang Chuan, Li Qianyong, Ma Zhengzhuo, Xu Yanhua, Liu Zhiying. Research Progress of Toxic Effects of Environmental Stresses on Marine Medaka (Oryzias melastigma) in Genomics and Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
Citation: Sun Zhecheng, Liang Chuan, Li Qianyong, Ma Zhengzhuo, Xu Yanhua, Liu Zhiying. Research Progress of Toxic Effects of Environmental Stresses on Marine Medaka (Oryzias melastigma) in Genomics and Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001

环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展

    作者简介: 孙哲诚(1999—),男,硕士研究生,研究方向为生态毒理学,E-mail: 202161102004@njtech.edu.cn
    通讯作者: 刘志英, E-mail: zhiying555@163.com
  • 基金项目:

    国家“十三五”重点研发课题(2017YFB0602500)

  • 中图分类号: X171.5

Research Progress of Toxic Effects of Environmental Stresses on Marine Medaka (Oryzias melastigma) in Genomics and Proteomics

    Corresponding author: Liu Zhiying, zhiying555@163.com
  • Fund Project:
  • 摘要: 近年来,海水青鳉(Oryzias melastigma)已经被公认为海洋生态毒理学研究中的一种模式生物,其具有与淡水模式生物斑马鱼(Danio rerio)类似的研究特征优势,如世代时间短(3~4个月)、每日产卵、成鱼尺寸小(2.5~3.5 cm)、胚胎透明、性别二态性以及易于进行实验室规模化养殖等。在过去十余年中,国内外的研究者们对海水青鳉进行了广泛的基因组和蛋白质组研究。这些组学数据能够进一步帮助我们在分子层面了解环境胁迫对海洋生物的潜在影响及其可能的毒性机制。在这篇综述中,我们归纳了海水青鳉作为海洋生态毒理学研究模型的优势,介绍了当前用于海水青鳉基因/蛋白质组学的技术方法,整理了基因/蛋白质组学在研究不同种类的海洋环境压力源对海水青鳉毒性效应的应用现状。最后,我们对未来海水青鳉的研究提出了一定的预期与展望。
  • 加载中
  • 郭强之, 党文义, 张昌运, 等. 石油化工企业开展毒理学研究的意义探讨[J]. 安全、健康和环境, 2018, 18(11): 50-52

    Guo Q Z, Dang W Y, Zhang C Y, et al. Discussion on the significance of toxicology research in petrochemical enterprises[J]. Safety Health & Environment, 2018, 18(11): 50-52(in Chinese)

    李文刚, 孙耀胜, 么强, 等. 新型有机污染物污染现状及其深度处理工艺研究进展[J]. 环境工程, 2021, 39(8): 77-87

    Li W G, Sun Y S, Yao Q, et al. Review on pollution status and advanced treatment technologies of emerging organic pollutants[J]. Environmental Engineering, 2021, 39(8): 77-87(in Chinese)

    罗莹. 典型新型污染物水生态风险评估研究[D]. 保定: 河北大学, 2018: 1-3
    Sanchez B C, Ralston-Hooper K, Sepúlveda M S. Review of recent proteomic applications in aquatic toxicology[J]. Environmental Toxicology and Chemistry, 2011, 30(2): 274-282
    Kim B M, Kim J, Choi I Y, et al. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research[J]. Marine Environmental Research, 2016, 113: 141-152
    史志诚. 中国现代毒理学的形成与发展[C]// 中国毒理学会毒理学史专业委员会. 毒理学史研究文集(第八集). 2009: 9-26
    谷河泉, 陈庆强. 中国近海持久性毒害污染物研究进展[J]. 生态学报, 2008, 28(12): 6243-6251

    Gu H Q, Chen Q Q. Persistent toxic substances in offshore zone of China: A review[J]. Acta Ecologica Sinica, 2008, 28(12): 6243-6251(in Chinese)

    French R A, Jacobson A R, Kim B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43(5): 1354-1359
    You C, Jia C X, Pan G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface[J]. Environmental Pollution, 2010, 158(5): 1343-1347
    Jeon J, Kannan K, Lim H K, et al. Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients[J]. Environmental Science & Technology, 2010, 44(7): 2695-2701
    陈漪, 王晓杰, 冉皓宇, 等. 海水模式种青鳉鱼(Oryzias melastigma)的胚胎发育观察[J]. 海洋与湖沼, 2016, 47(1): 71-82

    Chen Y, Wang X J, Ran H Y, et al. Developmental stages of a marine model fish—Medaka Oryzias melastigma[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 71-82(in Chinese)

    伍辛泷, 黄乾生, 方超, 等. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma)[J]. 生态毒理学报, 2012, 7(4): 345-353

    Wu X L, Huang Q S, Fang C, et al. Oryzias melastigma: A new promising model organism for marine ecotoxicology[J]. Asian Journal of Ecotoxicology, 2012, 7(4): 345-353(in Chinese)

    Yang W K, Kang C K, Chang C H, et al. Expression profiles of branchial FXYD proteins in the brackish medaka Oryzias dancena: A potential saltwater fish model for studies of osmoregulation[J]. PLoS One, 2013, 8(1): e55470
    Kang C K, Tsai S C, Lee T H, et al. Differential expression of branchial Na+/K(+)-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 151(4): 566-575
    Lai K P, Li J W, Wang S Y, et al. Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes[J]. BMC Genomics, 2015, 16(1): 135
    杨志艳, 薛雅芳, 徐永健. 4种重金属离子对海水青鳉胚胎发育及仔鱼的急性毒性研究[J]. 宁波大学学报(理工版), 2021, 34(5

    ): 9-15 Yang Z Y, Xue Y F, Xu Y J. Effects of four heavy metal ions on embryonic development and larval growth of Oryzias melastigma[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(5): 9-15(in Chinese)

    Ni X M, Wan L, Liang P P, et al. The acute toxic effects of hexavalent chromium on the liver of marine medaka (Oryzias melastigma)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 231: 108734
    Au D W T. 15th International Symposium on Toxicity Assessment[J]. Environmental Science and Pollution Research, 2012, 19(7): 2463-2464
    Chen X P, Li L, Cheng J P, et al. Molecular staging of marine medaka: A model organism for marine ecotoxicity study[J]. Marine Pollution Bulletin, 2011, 63(5-12): 309-317
    Gordon S. Genomics and World Health: Report of the Advisory Committee on Health Research[R]. Geneva: World Health Organization, 2002: 248
    Klug W, Cummings M R. Concepts of Genetics[M]. New York: Macmillan, 2019: 575-578
    Cho W C S. Proteomics technologies and challenges[J]. Genomics, Proteomics & Bioinformatics, 2007, 5(2): 77-85
    解增言, 林俊华, 谭军, 等. DNA测序技术的发展历史与最新进展[J]. 生物技术通报, 2010(8): 64-70 Xie Z Y, Lin J H, Tan J, et al. The history and advances of DNA sequencing technology[J]. Biotechnology Bulletin, 2010

    (8): 64-70(in Chinese)

    田李, 张颖, 赵云峰. 新一代测序技术的发展和应用[J]. 生物技术通报, 2015, 31(11): 1-8

    Tian L, Zhang Y, Zhao Y F. The next generation sequencing technology and its applications[J]. Biotechnology Bulletin, 2015, 31(11): 1-8(in Chinese)

    Heather J M, Chain B. The sequence of sequencers: The history of sequencing DNA[J]. Genomics, 2016, 107(1): 1-8
    Shendure J, Balasubramanian S, Church G M, et al. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345-353
    Aslam B, Basit M, Nisar M A, et al. Proteomics: Technologies and their applications[J]. Journal of Chromatographic Science, 2017, 55(2): 182-196
    龙晓辉, 莫志宏, 张耀洲. 基于二维凝胶电泳的蛋白质定量分析技术[J]. 化学进展, 2006, 18(4): 474-481

    Long X H, Mo Z H, Zhang Y Z. Quantitative analytical techniques of proteins based on two-dimensional gel electrophoresis[J]. Progress in Chemistry, 2006, 18(4): 474-481(in Chinese)

    Meleady P. Two-dimensional gel electrophoresis and 2D-DIGE[J]. Methods in Molecular Biology, 2018, 1664: 3-14
    张淑红, 冯硕, 李正平, 等. 高效液相色谱(HPLC)分离和检测蛋白质[J]. 河北农业大学学报, 2003, 26(S1): 148-151

    Zhang S H, Feng S, Li Z P, et al. The separation and detection of protein by high performance liquid chromatography[J]. Journal of Agricultural University of Hebei, 2003, 26(S1): 148-151(in Chinese)

    吴霓, 江天久, 江涛. 高效液相色谱分析鱼毒性藻类海洋卡盾藻溶血毒素[J]. 分析化学, 2012, 40(8): 1181-1186

    Wu N, Jiang T J, Jiang T. Analyses of hemolytic toxin from ichthyotoxic phytoplankton Chattonella marina (Hong Kong strain) by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(8): 1181-1186(in Chinese)

    贺锋. 基于二维凝胶电泳图像的蛋白质点检测方法研究[D]. 南昌: 南昌航空大学, 2011: 2-4
    Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics[J]. Molecular & Cellular Proteomics, 2002, 1(5): 376-386
    Kim B M, Choi B S, Kim H S, et al. Transcriptome profiling of larvae of the marine medaka Oryzias melastigma by Illumina RNA-seq[J]. Marine Genomics, 2015, 24(Pt 3): 255-258
    Hwang D S, Kim B M, Au D W T, et al. Complete mitochondrial genome of the marine medaka Oryzias melastigma (Beloniformes, Adrianichthyidae)[J]. Mitochondrial DNA, 2012, 23(4): 308-309
    崔倩. 苯并芘暴露诱导海水青鳉免疫应答的信号通路及其免疫调控机制研究[D]. 厦门: 厦门大学, 2019: 1-3
    Kim H S, Lee B Y, Han J, et al. The genome of the marine medaka Oryzias melastigma[J]. Molecular Ecology Resources, 2018, 18(3): 656-665
    陈瑶, 方志俊, 郑金树, 等. 海洋青鳉鱼专用型基因芯片的设计及其在生态毒理学上的应用研究[J]. 台湾海峡, 2010, 29(3): 359-366

    Chen Y, Fang Z J, Zheng J S, et al. Design of marine medaka (Oryzias melastigma) functional specific cDNA microarray and its ecotoxicological application[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(3): 359-366(in Chinese)

    Yu R M, Chen E X, Kong R Y, et al. Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: The marine medaka (Oryzias melastigma) model[J]. BMC Molecular Biology, 2006, 7: 27
    Kong R Y, Giesy J P, Wu R S, et al. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology[J]. Aquatic Toxicology, 2008, 86(2): 131-141
    Huang Q S, Fang C, Wu X L, et al. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2011, 105(1-2): 71-77
    Wong M M, Yu R M, Ng P K, et al. Characterization of a hypoxia-responsive leptin receptor (omLepR(L)) cDNA from the marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2007, 54(6): 797-803
    Rhee J S, Kim B M, Choi B S, et al. Whole spectrum of cytochrome P450 genes and molecular responses to water-accommodated fractions exposure in the marine medaka[J]. Environmental Science & Technology, 2013, 47(9): 4804-4812
    Fang C, Huang Q S, Ye T, et al. Embryonic exposure to PFOS induces immunosuppression in the fish larvae of marine medaka[J]. Ecotoxicology and Environmental Safety, 2013, 92: 104-111
    Huang Q S, Dong S J, Fang C, et al. Deep sequencing-based transcriptome profiling analysis of Oryzias melastigma exposed to PFOS[J]. Aquatic Toxicology, 2012, 120-121: 54-58
    Fang C, Wu X L, Huang Q S, et al. PFOS elicits transcriptional responses of the ER, AHR and PPAR pathways in Oryzias melastigma in a stage-specific manner[J]. Aquatic Toxicology, 2012, 106-107: 9-19
    Ye R R, Lei E N Y, Lam M H W, et al. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47[J]. Environmental Science and Pollution Research, 2012, 19(7): 2477-2487
    Bo J, Giesy J P, Ye R, et al. Identification of differentially expressed genes and quantitative expression of complement genes in the liver of marine medaka Oryzias melastigma challenged with Vibrio parahaemolyticus [J]. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 2012, 7(2): 191-200
    Huang Q S, Fang C, Chen Y J, et al. Embryonic exposure to low concentration of bisphenol A affects the development of Oryzias melastigma larvae[J]. Environmental Science and Pollution Research International, 2011, 19(7): 2506-2514
    Kang C K, Tsai H J, Liu C C, et al. Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: A molecular correlate for hyposmoregulatory endurance[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 157(1): 7-18
    Li Y J, Wang J, Yang G X, et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 2020, 385: 121586
    Kim R O, Kim B M, Hwang D S, et al. Evaluation of biomarker potential of cytochrome P4501A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2013, 157(2): 172-182
    He T T, Liang B, Liu W H, et al. Estrogenic potential of benzotriazole on marine medaka (Oryzias melastigma)[J]. Ecotoxicology and Environmental Safety, 2012, 80: 327-332
    Mu J L, Wang J Y, Jin F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2014, 85(2): 505-515
    马继铭. 菲与烷基菲对海水青鳉早期发育阶段的毒性效应比较研究[D]. 大连: 大连海事大学, 2012: 47
    Degger N, Tse A C K, Wu R S S. Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells[J]. Aquatic Toxicology, 2015, 169: 143-151
    Wang J, Li Y J, Lu L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2019, 254(Pt B): 113024
    Ye T, Kang M, Huang Q S, et al. Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2014, 146: 115-126
    Wang M H, Wang Y Y, Wang J, et al. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury[J]. Aquatic Toxicology, 2011, 103(3-4): 129-139
    Tian L, Wang M H, Li X M, et al. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1[J]. Aquatic Toxicology, 2011, 104(3-4): 211-217
    Zhu L M, Gao N, Wang R F, et al. Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure[J]. Ecotoxicology, 2018, 27(3): 267-277
    Wang M H, Wang Y Y, Zhang L, et al. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2013, 130-131: 123-131
    Wang Y Y, Wang D Z, Lin L, et al. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury[J]. Chemosphere, 2015, 119: 1126-1133
    潘三强, 宿宝贵, 吕来清. 二维电泳和iTRAQ的实验比较[J]. 神经解剖学杂志, 2008, 24(5): 538-542

    Pan S Q, Su B G, Lyu L Q. A comparative study between the two dimensional gel electrophoresis and iTRAQ method[J]. Chinese Journal of Neuroanatomy, 2008, 24(5): 538-542(in Chinese)

    Deracinois B, Flahaut C, Duban-Deweer S, et al. Comparative and quantitative global proteomics approaches: An overview[J]. Proteomes, 2013, 1(3): 180-218
    Chen L G, Sun J, Zhang H M, et al. Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide[5-octylfuran-2(5H)-one] or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT)[J]. Environmental Science & Technology, 2015, 49(3): 1851-1859
    Fong C C, Shi Y F, Yu W K, et al. iTRAQ-based proteomic profiling of the marine medaka (Oryzias melastigma) gonad exposed to BDE-47[J]. Marine Pollution Bulletin, 2014, 85(2): 471-478
    谷河泉, 陈庆强. 中国近海持久性毒害污染物研究进展[J]. 生态学报, 2008, 28(12): 6243-6251

    Gu H Q, Chen Q Q. Persistent toxic substances in offshore zone of China: A review[J]. Acta Ecologica Sinica, 2008, 28(12): 6243-6251(in Chinese)

    Wong S W Y, Leung P T Y, Djurišić A B, et al. Toxicities of nano zinc oxide to five marine organisms: Influences of aggregate size and ion solubility[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 609-618
    Chen X P, Li V W, Yu R M, et al. Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma)[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 200-208
    Bo J, Cai L, Xu J H, et al. The marine medaka Oryzias melastigma—A potential marine fish model for innate immune study[J]. Marine Pollution Bulletin, 2011, 63(5-12): 267-276
  • 加载中
计量
  • 文章访问数:  2973
  • HTML全文浏览数:  2973
  • PDF下载数:  145
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-13
孙哲诚, 梁川, 李乾永, 马正茁, 徐炎华, 刘志英. 环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展[J]. 生态毒理学报, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
引用本文: 孙哲诚, 梁川, 李乾永, 马正茁, 徐炎华, 刘志英. 环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展[J]. 生态毒理学报, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
Sun Zhecheng, Liang Chuan, Li Qianyong, Ma Zhengzhuo, Xu Yanhua, Liu Zhiying. Research Progress of Toxic Effects of Environmental Stresses on Marine Medaka (Oryzias melastigma) in Genomics and Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001
Citation: Sun Zhecheng, Liang Chuan, Li Qianyong, Ma Zhengzhuo, Xu Yanhua, Liu Zhiying. Research Progress of Toxic Effects of Environmental Stresses on Marine Medaka (Oryzias melastigma) in Genomics and Proteomics[J]. Asian journal of ecotoxicology, 2023, 18(2): 75-96. doi: 10.7524/AJE.1673-5897.20220713001

环境胁迫对海水青鳉(Oryzias melastigma)的毒性效应在基因组学和蛋白质组学上的研究进展

    通讯作者: 刘志英, E-mail: zhiying555@163.com
    作者简介: 孙哲诚(1999—),男,硕士研究生,研究方向为生态毒理学,E-mail: 202161102004@njtech.edu.cn
  • 南京工业大学环境科学与工程学院, 南京 211816
基金项目:

国家“十三五”重点研发课题(2017YFB0602500)

摘要: 近年来,海水青鳉(Oryzias melastigma)已经被公认为海洋生态毒理学研究中的一种模式生物,其具有与淡水模式生物斑马鱼(Danio rerio)类似的研究特征优势,如世代时间短(3~4个月)、每日产卵、成鱼尺寸小(2.5~3.5 cm)、胚胎透明、性别二态性以及易于进行实验室规模化养殖等。在过去十余年中,国内外的研究者们对海水青鳉进行了广泛的基因组和蛋白质组研究。这些组学数据能够进一步帮助我们在分子层面了解环境胁迫对海洋生物的潜在影响及其可能的毒性机制。在这篇综述中,我们归纳了海水青鳉作为海洋生态毒理学研究模型的优势,介绍了当前用于海水青鳉基因/蛋白质组学的技术方法,整理了基因/蛋白质组学在研究不同种类的海洋环境压力源对海水青鳉毒性效应的应用现状。最后,我们对未来海水青鳉的研究提出了一定的预期与展望。

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回