三氯卡班在鱼体的吸收、分配及代谢研究

姚理, 周熙, 陈飞龙, 杨嘉慧, 姚智锴, 陈智勇. 三氯卡班在鱼体的吸收、分配及代谢研究[J]. 生态毒理学报, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
引用本文: 姚理, 周熙, 陈飞龙, 杨嘉慧, 姚智锴, 陈智勇. 三氯卡班在鱼体的吸收、分配及代谢研究[J]. 生态毒理学报, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
Yao Li, Zhou Xi, Chen Feilong, Yang Jiahui, Yao Zhikai, Chen Zhiyong. Adsorption, Tissue Distribution and Biotransformation of Triclocarban in Fish[J]. Asian journal of ecotoxicology, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
Citation: Yao Li, Zhou Xi, Chen Feilong, Yang Jiahui, Yao Zhikai, Chen Zhiyong. Adsorption, Tissue Distribution and Biotransformation of Triclocarban in Fish[J]. Asian journal of ecotoxicology, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001

三氯卡班在鱼体的吸收、分配及代谢研究

    作者简介: 姚理(1990-),女,博士,助理研究员,研究方向为污染物生态健康风险评价,E-mail:yaolimn@163.com
    通讯作者: 姚理,E-mail:yaolimn@163.com; 
  • 基金项目:

    广东省自然科学基金资助项目(2019A1515010382);国家自然科学基金资助项目(41907366);广州市科技计划项目(2023A04J1396)

  • 中图分类号: X171.5

Adsorption, Tissue Distribution and Biotransformation of Triclocarban in Fish

    Corresponding author: Yao Li, yaolimn@163.com
  • Fund Project:
  • 摘要: 杀菌剂三氯卡班在水环境中广泛检出,其生态健康风险逐渐引起关注,然而目前有关其生物吸收和代谢转化机制还缺乏系统认识。本研究将罗非鱼置于环境相关浓度(2 μg·L-1)的三氯卡班中暴露14 d,考察了三氯卡班在鱼体内的吸收/净化动力学过程、稳态富集特征及代谢转化产物。结果表明,三氯卡班在罗非鱼肝、鳃、肾、胃、肉中的吸收和净化动力学过程均符合伪一级动力学方程:吸收动力学常数(ku)值分别1.93、2.10、1.30、13.4和0.429 mL·g-1·h-1;净化动力学常数(ke)值分别为0.0540、0.0539、0.0537、0.0541和0.0539 h-1;半衰期(t1/2)分别为12.8、12.9、12.9、12.8和12.9 h。达到吸收和净化动力学平衡后,三氯卡班在鱼体血浆、胆汁、肉、皮、脑、肾、鳃、肝、胃、肠中的稳态生物浓缩系数对数值log(BCFss)分别为-0.18、1.04、1.07、1.29、1.42、2.01、2.05、2.11、2.72、2.81,低于三氯卡班在野生鱼类体内的富集系数。环境相关暴露浓度(2 μg·L-1)下,三氯卡班在鱼体肝、鳃、肉、皮、肠、胆汁中可生成羟基化代谢产物及羟基化+硫酸化代谢产物。研究结果说明三氯卡班主要通过胃吸收进入鱼体,经过羟基化和硫酸化代谢以后,在肝、肾、胃等脂肪含量高的组织中有较高残留,其生态健康风险不容忽视。
  • 加载中
  • Cui Z H, He F L, Li X X, et al. Response pathways of superoxide dismutase and catalase under the regulation of triclocarban-triggered oxidative stress in Eisenia foetida:Comprehensive mechanism analysis based on cytotoxicity and binding model[J]. The Science of the Total Environment, 2022, 1:158821
    Zhao J L, Ying G G, Liu Y S, et al. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China:From source to the receiving environment[J]. Journal of Hazardous Materials, 2010, 179(1-3):215-222
    Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools:Implications for controlling of urban domestic sewage discharge[J]. Water Research, 2013, 47(1):395-405
    Yun H, Liang B, Kong D Y, et al. Fate, risk and removal of triclocarban:A critical review[J]. Journal of Hazardous Materials, 2020, 387:121944
    Wang X K, Jiang X J, Wang Y N, et al. Occurrence, distribution, and multi-phase partitioning of triclocarban and triclosan in an urban river receiving wastewater treatment plants effluent in China[J]. Environmental Science and Pollution Research International, 2014, 21(11):7065-7074
    Liu W R, Zhao J L, Liu Y S, et al. Biocides in the Yangtze River of China:Spatiotemporal distribution, mass load and risk assessment[J]. Environmental Pollution, 2015, 200:53-63
    Yao L, Zhao J L, Liu Y S, et al. Personal care products in wild fish in two main Chinese rivers:Bioaccumulation potential and human health risks[J]. The Science of the Total Environment, 2018, 621:1093-1102
    Tamura I, Kagota K, Yasuda Y, et al. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents:Triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol[J]. Journal of Applied Toxicology, 2013, 33(11):1222-1229
    Brausch J M, Rand G M. A review of personal care products in the aquatic environment:Environmental concentrations and toxicity[J]. Chemosphere, 2011, 82(11):1518-1532
    Giudice B D, Young T M. The antimicrobial triclocarban stimulates embryo production in the freshwater mudsnail Potamopyrgus antipodarum[J]. Environmental Toxicology and Chemistry, 2010, 29(4):966-970
    Zenobio J E, Sanchez B C, Archuleta L C, et al. Effects of triclocarban, N,N-diethyl-meta-toluamide, and a mixture of pharmaceuticals and personal care products on fathead minnows (Pimephales promelas)[J]. Environmental Toxicology and Chemistry, 2014, 33(4):910-919
    Wang P P, Du Z K, Gao S X, et al. Impairment of reproduction of adult zebrafish (Danio rerio) by binary mixtures of environmentally relevant concentrations of triclocarban and inorganic mercury[J]. Ecotoxicology and Environmental Safety, 2016, 134:124-132
    Dong X, Xu H, Wu X Y, et al. Multiple bioanalytical method to reveal developmental biological responses in zebrafish embryos exposed to triclocarban[J]. Chemosphere, 2018, 193:251-258
    Vimalkumar K, Arun E, Krishna-Kumar S, et al. Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers[J]. The Science of the Total Environment, 2018, 625:1351-1360
    Yao L, Zhao J L, Liu Y S, et al. Simultaneous determination of 24 personal care products in fish muscle and liver tissues using QuEChERS extraction coupled with ultra pressure liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometer analyses[J]. Analytical and Bioanalytical Chemistry, 2016, 408(28):8177-8193
    Yao L, Lv Y Z, Zhang L J, et al. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2018, 1551:29-40
    Landrum P F, Lydy M J, Lee HⅡ. Toxicokinetics in aquatic systems:Model comparisons and use in hazard assessment[J]. Environmental Toxicology and Chemistry, 1992, 11(12):1709-1725
    Zhao J L, Furlong E T, Schoenfuss H L, et al. Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system[J]. Environmental Science & Technology, 2017, 51(8):4434-4444
    Kobayashi J, Kinoshita K, Mizukawa K, et al. Dietary uptake kinetics of polychlorinated biphenyls from sediment-contaminated sandworms in a marine benthic fish (Pseudopleuronectes yokohamae)[J]. Chemosphere, 2011, 82(5):745-750
    Organization for Economic Co-operation and Development (OECD). Guidance document of aspects of OECD TG 305 on fish bioaccumulation[R]. Paris:OECD, 2017
    Yao L, Lv Y Z, Zhang L J, et al. Bioaccumulation and risks of 24 personal care products in plasma of wild fish from the Yangtze River, China[J]. The Science of the Total Environment, 2019, 665:810-819
    Coogan M A, Edziyie R E, La Point T W, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream[J]. Chemosphere, 2007, 67(10):1911-1918
    Peng X Z, Zheng K, Liu J, et al. Body size-dependent bioaccumulation, tissue distribution, and trophic and maternal transfer of phenolic endocrine-disrupting contaminants in a freshwater ecosystem[J]. Environmental Toxicology and Chemistry, 2018, 37(7):1811-1823
    姚理, 马艳芳, 周漪波, 等. 氯咪巴唑在鱼体的富集和代谢动力学[J]. 中国环境科学, 2019, 39(8):3501-3507

    Yao L, Ma Y F, Zhou Y B, et al. The bioaccumulation and metabolic kinetics of climbazole in fish[J]. China Environmental Science, 2019, 39(8):3501-3507(in Chinese)

    Wang G Q, Zhang H N, Zhang J N, et al. Metabolic fate of environmental chemical triclocarban in colon tissues:Roles of gut microbiota involved[J]. The Science of the Total Environment, 2021, 787:147677
    Zhang H N, Lu Y, Liang Y S, et al. Triclocarban-induced responses of endogenous and xenobiotic metabolism in human hepatic cells:Toxicity assessment based on nontargeted metabolomics approach[J]. Journal of Hazardous Materials, 2020, 392:122475
  • 加载中
计量
  • 文章访问数:  1294
  • HTML全文浏览数:  1294
  • PDF下载数:  96
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-09
姚理, 周熙, 陈飞龙, 杨嘉慧, 姚智锴, 陈智勇. 三氯卡班在鱼体的吸收、分配及代谢研究[J]. 生态毒理学报, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
引用本文: 姚理, 周熙, 陈飞龙, 杨嘉慧, 姚智锴, 陈智勇. 三氯卡班在鱼体的吸收、分配及代谢研究[J]. 生态毒理学报, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
Yao Li, Zhou Xi, Chen Feilong, Yang Jiahui, Yao Zhikai, Chen Zhiyong. Adsorption, Tissue Distribution and Biotransformation of Triclocarban in Fish[J]. Asian journal of ecotoxicology, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001
Citation: Yao Li, Zhou Xi, Chen Feilong, Yang Jiahui, Yao Zhikai, Chen Zhiyong. Adsorption, Tissue Distribution and Biotransformation of Triclocarban in Fish[J]. Asian journal of ecotoxicology, 2023, 18(4): 304-312. doi: 10.7524/AJE.1673-5897.20221209001

三氯卡班在鱼体的吸收、分配及代谢研究

    通讯作者: 姚理,E-mail:yaolimn@163.com; 
    作者简介: 姚理(1990-),女,博士,助理研究员,研究方向为污染物生态健康风险评价,E-mail:yaolimn@163.com
  • 广东省科学院测试分析研究所(中国广州分析测试中心), 广东省化学测量与应急检测技术重点实验室, 广东省固体废物危险性鉴别与风险评估工程技术研究中心, 广州 510070
基金项目:

广东省自然科学基金资助项目(2019A1515010382);国家自然科学基金资助项目(41907366);广州市科技计划项目(2023A04J1396)

摘要: 杀菌剂三氯卡班在水环境中广泛检出,其生态健康风险逐渐引起关注,然而目前有关其生物吸收和代谢转化机制还缺乏系统认识。本研究将罗非鱼置于环境相关浓度(2 μg·L-1)的三氯卡班中暴露14 d,考察了三氯卡班在鱼体内的吸收/净化动力学过程、稳态富集特征及代谢转化产物。结果表明,三氯卡班在罗非鱼肝、鳃、肾、胃、肉中的吸收和净化动力学过程均符合伪一级动力学方程:吸收动力学常数(ku)值分别1.93、2.10、1.30、13.4和0.429 mL·g-1·h-1;净化动力学常数(ke)值分别为0.0540、0.0539、0.0537、0.0541和0.0539 h-1;半衰期(t1/2)分别为12.8、12.9、12.9、12.8和12.9 h。达到吸收和净化动力学平衡后,三氯卡班在鱼体血浆、胆汁、肉、皮、脑、肾、鳃、肝、胃、肠中的稳态生物浓缩系数对数值log(BCFss)分别为-0.18、1.04、1.07、1.29、1.42、2.01、2.05、2.11、2.72、2.81,低于三氯卡班在野生鱼类体内的富集系数。环境相关暴露浓度(2 μg·L-1)下,三氯卡班在鱼体肝、鳃、肉、皮、肠、胆汁中可生成羟基化代谢产物及羟基化+硫酸化代谢产物。研究结果说明三氯卡班主要通过胃吸收进入鱼体,经过羟基化和硫酸化代谢以后,在肝、肾、胃等脂肪含量高的组织中有较高残留,其生态健康风险不容忽视。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回