磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究
Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate
-
摘要: 随着多溴联苯醚被逐步禁用,有机磷酸酯成为主要的替代品被广泛使用,逐渐进入到海洋环境中,给海洋生物带来极大威胁。由有机磷酸酯导致的活性氧(ROS)过多积累而产生的氧化损伤被认为是其致毒的主要机制。但在浮游植物细胞中,ROS如何被诱导产生并不清晰。本文以海洋硅藻——三角褐指藻为研究对象,利用转录组和生理生化手段,研究了浮游植物细胞ROS产生与清除过程对一种烷基有机磷酸酯——磷酸三丁酯(TnBP)的响应特征。结果表明,不同浓度TnBP胁迫(1.5、3.0和4.5 μmol·L-1)能够诱导三角褐指藻细胞内ROS含量上升。转录组和生理生化验证结果显示,TnBP抑制了三角褐指藻的岩藻黄素-叶绿素a/c蛋白复合体捕光天线蛋白和放氧复合体关键组分的基因表达,下调了铁氧还蛋白-NADP+还原酶等电子传递链关键基因的表达量和电子传递速率,促进了ROS的产生。同时,TnBP抑制了过氧化物酶体中与货物蛋白转运相关基因的表达。在谷胱甘肽代谢途径中,TnBP虽然诱导抗坏血酸抗氧化酶活性升高,但降低了谷胱甘肽还原酶活性和基因表达,造成还原型/氧化型谷胱甘肽比值下降,表明TnBP抑制了藻细胞对ROS的清除能力,最终引起了ROS的过量积累。在所有的生理生化指标中,光合电子传递速率可以作为敏感的生物标志物来反映TnBP对浮游植物的生态毒性。研究结果将为包含TnBP在内的烷基有机磷酸酯的毒性作用模式提供依据,对于海洋生态系统中有机磷酸酯的风险评估具有实际意义。Abstract: With the gradual phasing out of polybrominated diphenyl ethers, organophosphorus esters are widely used as the main alternatives. Nowadays, they are frequently detected in the marine environment, posing a great threat to marine organism. Previous studies have shown that organophosphorus esters induced toxicity was attributed as oxidative damage via the overproduction of reactive oxygen species (ROS). However, the cause of excess ROS accumulation in phytoplankton cells is unclear. This study treated the marine diatom Phaeodactylum tricornutum as targets when exposed to an alkyl organophosphate tributyl phosphate (TnBP). The changes of the generation and scavenging of ROS were studied using transcriptomics and physiological and biochemical approaches. Results showed that different concentrations of TnBP exposure (1.5, 3.0, and 4.5 μmol·L-1) induced an increase in ROS levels in P. tricornutum cells. Transcriptomics and its subsequent physiological and biochemical validation revealed that TnBP inhibited the gene expression encoding the fucoxanthin-chlorophyll a/c protein complex and oxygen-evolving complex in P. tricornutum. The expression levels of key genes in the electron transport chain, such as ferredoxin-NADP+ reductase, were downregulated, which could promote ROS production. Simultaneously, TnBP suppressed the expression of genes related to matrix protein import in peroxisomes. In the glutathione metabolic pathway, TnBP induced an increase in ascorbate peroxidase antioxidant activity but reduced the activity of glutathione reductase and its gene expression, resulting in a decrease in the ratio of reduced to oxidized glutathione. It indicated that the ability of algal cell to scavenge ROS was inhibited by TnBP exposure, inevitably leading to the excessive accumulation of ROS. Among all physiological and biochemical indicators, the photosynthetic electron transport rate is suggested to be a sensitive biomarker to reflect the ecotoxicity of TnBP on phytoplankton. These results will provide a basis for recognizing the toxic action mode of alkyl organophosphates, including TnBP, and have practical significance for the risk assessment of organophosphorus esters in the marine ecosystem.
-
Key words:
- TnBP /
- Phaeodactylum tricornutum /
- phytotoxicity /
- oxidative stress /
- organophosphorus esters
-
-
Wang W, Deng S B, Li D Y, et al. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins[J]. Chemical Engineering Journal, 2018, 354:105-112 张金凤, 逯南南, 侯书国, 等. 磷酸三丁酯的生物毒性效应研究进展[J]. 生态毒理学报, 2022, 17(3):366-384 Zhang J F, Lu N N, Hou S G, et al. Research progress on biological toxicity effects of tributyl phosphate[J]. Asian Journal of Ecotoxicology, 2022, 17(3):366-384(in Chinese)
赵海娟, 张文洁, 郑美玲, 等. GC-MS法测定烟用包装材料中非邻苯酯类增塑剂[J]. 包装工程, 2019, 40(9):59-65 Zhao H J, Zhang W J, Zheng M L, et al. Determination of non-phenyl ester plasticizers in packaging materials for cigarettes by GC-MS[J]. Packaging Engineering, 2019, 40(9):59-65(in Chinese)
van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153 刘静, 何丽雄, 曾祥英, 等. 珠江主干和东江河流表层沉积物中有机磷酸酯阻燃剂/增塑剂分布[J]. 生态毒理学报, 2016, 11(2):436-443 Liu J, He L X, Zeng X Y, et al. Occurrence and distribution of organophosphorus flame retardants/plasticizer in surface sediments from the Pearl River and Dongjiang River[J]. Asian Journal of Ecotoxicology, 2016, 11(2):436-443(in Chinese)
Zhong M Y, Tang J H, Guo X Y, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China Seas[J]. Science of the Total Environment, 2020, 741:140434 Vetter W, Janussen D. Halogenated natural products in five species of Antarctic sponges:Compounds with POP-like properties?[J]. Environmental Science & Technology, 2005, 39(11):3889-3895 Wang X, Zhu Q Q, Yan X T, et al. A review of organophosphate flame retardants and plasticizers in the environment:Analysis, occurrence and risk assessment[J]. The Science of the Total Environment, 2020, 731:139071 Ji B J, Liu Y, Wu Y, et al. Organophosphate esters and synthetic musks in the sediments of the Yangtze River Estuary and adjacent East China Sea:Occurrence, distribution, and potential ecological risks[J]. Marine Pollution Bulletin, 2022, 179:113661 彭涛. 有机磷酸酯阻燃剂对模式鱼的行为毒性[D]. 杭州:浙江工业大学, 2015:14-33 Peng T. Behavioral toxicolgy of organophosphorus flame retardants on the model fish[D]. Hangzhou:Zhejiang University of Technology, 2015:14 -33(in Chinese)
Zhang X, Tang X X, Yang Y Y, et al. Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP)[J]. Environmental Pollution, 2021, 273:116462 Song H, Fan X J, Liu G F, et al. Inhibitory effects of tributyl phosphate on algal growth, photosynthesis, and fatty acid synthesis in the marine diatom Phaeodactylum tricornutum[J]. Environmental Science and Pollution Research, 2016, 23(23):24009-24018 Liu Q, Tang X X, Wang Y, et al. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum[J]. Aquatic Toxicology, 2019, 208:168-178 Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57(5):779-795 Edreva A. Generation and scavenging of reactive oxygen species in chloroplasts:A submolecular approach[J]. Agriculture, Ecosystems & Environment, 2005, 106(2-3):119-133 De Martino A, Meichenin A, Shi J A, et al. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions[J]. Journal of Phycology, 2007, 43(5):992-1009 International Organization for Standardization (ISO). Water quality-Marine algal growth inhibition test with Skeletonema sp. and Phaeodactylum tricornutum:ISO 10253-2016[S]. Geneva:ISO, 2016 Shi Q P, Guo W, Shen Q C, et al. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants[J]. Journal of Hazardous Materials, 2021, 409:124999 Li A M, Zheng G C, Chen N, et al. Occurrence characteristics and ecological risk assessment of organophosphorus compounds in a wastewater treatment plant and upstream enterprises[J]. Water, 2022, 14(23):3942 Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 1980, 106(1):207-212 Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species[J]. Plant Physiology, 1996, 112(4):1631-1640 Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids[J]. Plant and Cell Physiology, 1992, 33(5):541-553 Yan S H, Wu H M, Qin J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Pollution, 2017, 225:559-568 陈寒嫣. 常用有机磷酸酯阻燃剂对斑马鱼肝脏毒性研究[D]. 南京:南京大学, 2017:26-40 Chen H Y. Hepatotoxicity of commonly used organophosphate flame retardants in zebrafish (Danio rerio)[D]. Nanjing:Nanjing University, 2017:26 -40(in Chinese)
Chu Y H, Zhang C F, Ho S H. Computational simulation associated with biological effects of alkyl organophosphate flame retardants with different carbon chain lengths on Chlorella pyrenoidosa[J]. Chemosphere, 2021, 263:127997 Bubalo M C, Radošević K, Redovniković I R, et al. A brief overview of the potential environmental hazards of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2014, 99:1-12 Nymark M, Valle K C, Brembu T, et al. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum[J]. PLoS One, 2009, 4(11):e7743 Huang R P, Ding J C, Gao K S, et al. A potential role for epigenetic processes in the acclimation response to elevated pCO2 in the model diatom Phaeodactylum tricornutum[J]. Frontiers in Microbiology, 2019, 9:3342 Tikhonov A N. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways[J]. Plant Physiology and Biochemistry, 2014, 81:163-183 Li B X, Mao D Z, Liu Y L, et al. Characterization of the cytochrome b(6)f complex from marine green alga, Bryopsis corticulans[J]. Photosynthesis Research, 2005, 83(3):297-305 Liu Q, Tang X X, Jian X Y, et al. Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine alga Phaeodactylum tricornutum[J]. Chemosphere, 2020, 252:126467 Liu Q, Tang X X, Zhang X, et al. Mechanistic understanding of the toxicity of triphenyl phosphate (TPhP) to the marine diatom Phaeodactylum tricornutum:Targeting chloroplast and mitochondrial dysfunction[J]. Environmental Pollution, 2022, 295:118670 Locato V, Cimini S, De Gara L. Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance[M]//Hossain M, Mostofa M, Diaz-Vivancos P, et al. Glutathione in Plant Growth, Development, and Stress Tolerance. Cham:Springer, 2017:127-145 Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress:Revisiting the crucial role of a universal defense regulator[J]. Antioxidants, 2020, 9(8):681 Gill S S, Anjum N A, Hasanuzzaman M, et al. Glutathione and glutathione reductase:A boon in disguise for plant abiotic stress defense operations[J]. Plant Physiology and Biochemistry, 2013, 70:204-212 Islinger M, Grille S, Fahimi H D, et al. The peroxisome:An update on mysteries[J]. Histochemistry and Cell Biology, 2012, 137(5):547-574 Kalel V C, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries[M]//del Río L, Schrader M. Proteomics of Peroxisomes. Singapore:Springer, 2018:299-321 Skowyra M L, Rapoport T A. PEX5 translocation into and out of peroxisomes drives matrix protein import[J]. Molecular Cell, 2022, 82(17):3209-3225.e7 Feng P Q, Wu X D, Erramilli S K, et al. A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel[J]. Nature, 2022, 607(7918):374-380 -

计量
- 文章访问数: 1546
- HTML全文浏览数: 1546
- PDF下载数: 121
- 施引文献: 0