磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究

王承敏, 菅潇扬, 张鑫, 唐学玺, 张鑫鑫. 磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究[J]. 生态毒理学报, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
引用本文: 王承敏, 菅潇扬, 张鑫, 唐学玺, 张鑫鑫. 磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究[J]. 生态毒理学报, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
Wang Chengmin, Jian Xiaoyang, Zhang Xin, Tang Xuexi, Zhang Xinxin. Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate[J]. Asian journal of ecotoxicology, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
Citation: Wang Chengmin, Jian Xiaoyang, Zhang Xin, Tang Xuexi, Zhang Xinxin. Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate[J]. Asian journal of ecotoxicology, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002

磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究

    作者简介: 王承敏(1998-),女,硕士研究生,研究方向为海洋生态学,E-mail:hhwangchengmin@163.com
    通讯作者: 张鑫鑫,E-mail:zhangxinxin@ouc.edu.cn;  张鑫鑫,E-mail:zhangxinxin@ouc.edu.cn
  • 基金项目:

    青岛海洋科学与技术试点国家实验室“十四五”重大项目(LSKJ202203900)

  • 中图分类号: X171.5

Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate

    Corresponding authors: Zhang Xin, zhangxinxin@ouc.edu.cn ;  Zhang Xinxin, zhangxinxin@ouc.edu.cn
  • Fund Project:
  • 摘要: 随着多溴联苯醚被逐步禁用,有机磷酸酯成为主要的替代品被广泛使用,逐渐进入到海洋环境中,给海洋生物带来极大威胁。由有机磷酸酯导致的活性氧(ROS)过多积累而产生的氧化损伤被认为是其致毒的主要机制。但在浮游植物细胞中,ROS如何被诱导产生并不清晰。本文以海洋硅藻——三角褐指藻为研究对象,利用转录组和生理生化手段,研究了浮游植物细胞ROS产生与清除过程对一种烷基有机磷酸酯——磷酸三丁酯(TnBP)的响应特征。结果表明,不同浓度TnBP胁迫(1.5、3.0和4.5 μmol·L-1)能够诱导三角褐指藻细胞内ROS含量上升。转录组和生理生化验证结果显示,TnBP抑制了三角褐指藻的岩藻黄素-叶绿素a/c蛋白复合体捕光天线蛋白和放氧复合体关键组分的基因表达,下调了铁氧还蛋白-NADP+还原酶等电子传递链关键基因的表达量和电子传递速率,促进了ROS的产生。同时,TnBP抑制了过氧化物酶体中与货物蛋白转运相关基因的表达。在谷胱甘肽代谢途径中,TnBP虽然诱导抗坏血酸抗氧化酶活性升高,但降低了谷胱甘肽还原酶活性和基因表达,造成还原型/氧化型谷胱甘肽比值下降,表明TnBP抑制了藻细胞对ROS的清除能力,最终引起了ROS的过量积累。在所有的生理生化指标中,光合电子传递速率可以作为敏感的生物标志物来反映TnBP对浮游植物的生态毒性。研究结果将为包含TnBP在内的烷基有机磷酸酯的毒性作用模式提供依据,对于海洋生态系统中有机磷酸酯的风险评估具有实际意义。
  • 加载中
  • Wang W, Deng S B, Li D Y, et al. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins[J]. Chemical Engineering Journal, 2018, 354:105-112
    张金凤, 逯南南, 侯书国, 等. 磷酸三丁酯的生物毒性效应研究进展[J]. 生态毒理学报, 2022, 17(3):366-384

    Zhang J F, Lu N N, Hou S G, et al. Research progress on biological toxicity effects of tributyl phosphate[J]. Asian Journal of Ecotoxicology, 2022, 17(3):366-384(in Chinese)

    赵海娟, 张文洁, 郑美玲, 等. GC-MS法测定烟用包装材料中非邻苯酯类增塑剂[J]. 包装工程, 2019, 40(9):59-65

    Zhao H J, Zhang W J, Zheng M L, et al. Determination of non-phenyl ester plasticizers in packaging materials for cigarettes by GC-MS[J]. Packaging Engineering, 2019, 40(9):59-65(in Chinese)

    van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153
    刘静, 何丽雄, 曾祥英, 等. 珠江主干和东江河流表层沉积物中有机磷酸酯阻燃剂/增塑剂分布[J]. 生态毒理学报, 2016, 11(2):436-443

    Liu J, He L X, Zeng X Y, et al. Occurrence and distribution of organophosphorus flame retardants/plasticizer in surface sediments from the Pearl River and Dongjiang River[J]. Asian Journal of Ecotoxicology, 2016, 11(2):436-443(in Chinese)

    Zhong M Y, Tang J H, Guo X Y, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China Seas[J]. Science of the Total Environment, 2020, 741:140434
    Vetter W, Janussen D. Halogenated natural products in five species of Antarctic sponges:Compounds with POP-like properties?[J]. Environmental Science & Technology, 2005, 39(11):3889-3895
    Wang X, Zhu Q Q, Yan X T, et al. A review of organophosphate flame retardants and plasticizers in the environment:Analysis, occurrence and risk assessment[J]. The Science of the Total Environment, 2020, 731:139071
    Ji B J, Liu Y, Wu Y, et al. Organophosphate esters and synthetic musks in the sediments of the Yangtze River Estuary and adjacent East China Sea:Occurrence, distribution, and potential ecological risks[J]. Marine Pollution Bulletin, 2022, 179:113661
    彭涛. 有机磷酸酯阻燃剂对模式鱼的行为毒性[D]. 杭州:浙江工业大学, 2015:14-33 Peng T. Behavioral toxicolgy of organophosphorus flame retardants on the model fish[D]. Hangzhou:Zhejiang University of Technology, 2015:14

    -33(in Chinese)

    Zhang X, Tang X X, Yang Y Y, et al. Responses of the reproduction, population growth and metabolome of the marine rotifer Brachionus plicatilis to tributyl phosphate (TnBP)[J]. Environmental Pollution, 2021, 273:116462
    Song H, Fan X J, Liu G F, et al. Inhibitory effects of tributyl phosphate on algal growth, photosynthesis, and fatty acid synthesis in the marine diatom Phaeodactylum tricornutum[J]. Environmental Science and Pollution Research, 2016, 23(23):24009-24018
    Liu Q, Tang X X, Wang Y, et al. ROS changes are responsible for tributyl phosphate (TBP)-induced toxicity in the alga Phaeodactylum tricornutum[J]. Aquatic Toxicology, 2019, 208:168-178
    Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57(5):779-795
    Edreva A. Generation and scavenging of reactive oxygen species in chloroplasts:A submolecular approach[J]. Agriculture, Ecosystems & Environment, 2005, 106(2-3):119-133
    De Martino A, Meichenin A, Shi J A, et al. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions[J]. Journal of Phycology, 2007, 43(5):992-1009
    International Organization for Standardization (ISO). Water quality-Marine algal growth inhibition test with Skeletonema sp. and Phaeodactylum tricornutum:ISO 10253-2016[S]. Geneva:ISO, 2016
    Shi Q P, Guo W, Shen Q C, et al. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants[J]. Journal of Hazardous Materials, 2021, 409:124999
    Li A M, Zheng G C, Chen N, et al. Occurrence characteristics and ecological risk assessment of organophosphorus compounds in a wastewater treatment plant and upstream enterprises[J]. Water, 2022, 14(23):3942
    Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 1980, 106(1):207-212
    Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species[J]. Plant Physiology, 1996, 112(4):1631-1640
    Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids[J]. Plant and Cell Physiology, 1992, 33(5):541-553
    Yan S H, Wu H M, Qin J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Pollution, 2017, 225:559-568
    陈寒嫣. 常用有机磷酸酯阻燃剂对斑马鱼肝脏毒性研究[D]. 南京:南京大学, 2017:26-40 Chen H Y. Hepatotoxicity of commonly used organophosphate flame retardants in zebrafish (Danio rerio)[D]. Nanjing:Nanjing University, 2017:26

    -40(in Chinese)

    Chu Y H, Zhang C F, Ho S H. Computational simulation associated with biological effects of alkyl organophosphate flame retardants with different carbon chain lengths on Chlorella pyrenoidosa[J]. Chemosphere, 2021, 263:127997
    Bubalo M C, Radošević K, Redovniković I R, et al. A brief overview of the potential environmental hazards of ionic liquids[J]. Ecotoxicology and Environmental Safety, 2014, 99:1-12
    Nymark M, Valle K C, Brembu T, et al. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum[J]. PLoS One, 2009, 4(11):e7743
    Huang R P, Ding J C, Gao K S, et al. A potential role for epigenetic processes in the acclimation response to elevated pCO2 in the model diatom Phaeodactylum tricornutum[J]. Frontiers in Microbiology, 2019, 9:3342
    Tikhonov A N. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways[J]. Plant Physiology and Biochemistry, 2014, 81:163-183
    Li B X, Mao D Z, Liu Y L, et al. Characterization of the cytochrome b(6)f complex from marine green alga, Bryopsis corticulans[J]. Photosynthesis Research, 2005, 83(3):297-305
    Liu Q, Tang X X, Jian X Y, et al. Toxic effect and mechanism of tris (1,3-dichloro-2-propyl)phosphate (TDCPP) on the marine alga Phaeodactylum tricornutum[J]. Chemosphere, 2020, 252:126467
    Liu Q, Tang X X, Zhang X, et al. Mechanistic understanding of the toxicity of triphenyl phosphate (TPhP) to the marine diatom Phaeodactylum tricornutum:Targeting chloroplast and mitochondrial dysfunction[J]. Environmental Pollution, 2022, 295:118670
    Locato V, Cimini S, De Gara L. Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance[M]//Hossain M, Mostofa M, Diaz-Vivancos P, et al. Glutathione in Plant Growth, Development, and Stress Tolerance. Cham:Springer, 2017:127-145
    Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress:Revisiting the crucial role of a universal defense regulator[J]. Antioxidants, 2020, 9(8):681
    Gill S S, Anjum N A, Hasanuzzaman M, et al. Glutathione and glutathione reductase:A boon in disguise for plant abiotic stress defense operations[J]. Plant Physiology and Biochemistry, 2013, 70:204-212
    Islinger M, Grille S, Fahimi H D, et al. The peroxisome:An update on mysteries[J]. Histochemistry and Cell Biology, 2012, 137(5):547-574
    Kalel V C, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries[M]//del Río L, Schrader M. Proteomics of Peroxisomes. Singapore:Springer, 2018:299-321
    Skowyra M L, Rapoport T A. PEX5 translocation into and out of peroxisomes drives matrix protein import[J]. Molecular Cell, 2022, 82(17):3209-3225.e7
    Feng P Q, Wu X D, Erramilli S K, et al. A peroxisomal ubiquitin ligase complex forms a retrotranslocation channel[J]. Nature, 2022, 607(7918):374-380
  • 加载中
计量
  • 文章访问数:  1546
  • HTML全文浏览数:  1546
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-11
王承敏, 菅潇扬, 张鑫, 唐学玺, 张鑫鑫. 磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究[J]. 生态毒理学报, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
引用本文: 王承敏, 菅潇扬, 张鑫, 唐学玺, 张鑫鑫. 磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究[J]. 生态毒理学报, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
Wang Chengmin, Jian Xiaoyang, Zhang Xin, Tang Xuexi, Zhang Xinxin. Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate[J]. Asian journal of ecotoxicology, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002
Citation: Wang Chengmin, Jian Xiaoyang, Zhang Xin, Tang Xuexi, Zhang Xinxin. Molecular Insights into Production of Reactive Oxygen Species in Marine Phytoplankton Induced by Tributyl Phosphate[J]. Asian journal of ecotoxicology, 2023, 18(4): 313-323. doi: 10.7524/AJE.1673-5897.20230411002

磷酸三丁酯诱导下海洋浮游植物活性氧产生的分子机制研究

    通讯作者: 张鑫鑫,E-mail:zhangxinxin@ouc.edu.cn;  张鑫鑫,E-mail:zhangxinxin@ouc.edu.cn
    作者简介: 王承敏(1998-),女,硕士研究生,研究方向为海洋生态学,E-mail:hhwangchengmin@163.com
  • 1. 中国海洋大学海洋生命学院, 青岛 266003;
  • 2. 国家海洋局北海环境监测中心, 青岛 266000;
  • 3. 青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室, 青岛 266237
基金项目:

青岛海洋科学与技术试点国家实验室“十四五”重大项目(LSKJ202203900)

摘要: 随着多溴联苯醚被逐步禁用,有机磷酸酯成为主要的替代品被广泛使用,逐渐进入到海洋环境中,给海洋生物带来极大威胁。由有机磷酸酯导致的活性氧(ROS)过多积累而产生的氧化损伤被认为是其致毒的主要机制。但在浮游植物细胞中,ROS如何被诱导产生并不清晰。本文以海洋硅藻——三角褐指藻为研究对象,利用转录组和生理生化手段,研究了浮游植物细胞ROS产生与清除过程对一种烷基有机磷酸酯——磷酸三丁酯(TnBP)的响应特征。结果表明,不同浓度TnBP胁迫(1.5、3.0和4.5 μmol·L-1)能够诱导三角褐指藻细胞内ROS含量上升。转录组和生理生化验证结果显示,TnBP抑制了三角褐指藻的岩藻黄素-叶绿素a/c蛋白复合体捕光天线蛋白和放氧复合体关键组分的基因表达,下调了铁氧还蛋白-NADP+还原酶等电子传递链关键基因的表达量和电子传递速率,促进了ROS的产生。同时,TnBP抑制了过氧化物酶体中与货物蛋白转运相关基因的表达。在谷胱甘肽代谢途径中,TnBP虽然诱导抗坏血酸抗氧化酶活性升高,但降低了谷胱甘肽还原酶活性和基因表达,造成还原型/氧化型谷胱甘肽比值下降,表明TnBP抑制了藻细胞对ROS的清除能力,最终引起了ROS的过量积累。在所有的生理生化指标中,光合电子传递速率可以作为敏感的生物标志物来反映TnBP对浮游植物的生态毒性。研究结果将为包含TnBP在内的烷基有机磷酸酯的毒性作用模式提供依据,对于海洋生态系统中有机磷酸酯的风险评估具有实际意义。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回