环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响

施盈弛, 王佳, 尹洁晨, 李维溪, 王大勇, 刘冉. 环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响[J]. 生态毒理学报, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
引用本文: 施盈弛, 王佳, 尹洁晨, 李维溪, 王大勇, 刘冉. 环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响[J]. 生态毒理学报, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
Shi Yingchi, Wang Jia, Yin Jiechen, Li Weixi, Wang Dayong, Liu Ran. Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
Citation: Shi Yingchi, Wang Jia, Yin Jiechen, Li Weixi, Wang Dayong, Liu Ran. Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001

环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响

    作者简介: 施盈弛(1998-),女,硕士研究生,研究方向为环境与劳动卫生学,E-mail:545369270@qq.com
    通讯作者: 刘冉,E-mail:ranliu@seu.edu.cn
  • 基金项目:

    2021年江苏省研究生培养创新工程项目(SJCX21_0093)

  • 中图分类号: X171.5

Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans

    Corresponding author: Liu Ran, ranliu@seu.edu.cn
  • Fund Project:
  • 摘要: 睾酮主要通过禽畜粪便及处理不彻底的废水排放进入外环境,作为典型的内分泌干扰物之一,能够导致环境水体中鱼类雄性化,对环境健康及生态安全产生不利影响。将L1期秀丽隐杆线虫(Caenorhabditis elegans, C. elegans)暴露于环境相关浓度睾酮(0.1、1、10 μg·L-1)48 h,通过超高效液相色谱串联质谱(UPLC-MS/MS)技术检测初级代谢产物,观察生物体代谢活动的变化,筛选出环境相关浓度睾酮暴露后的差异代谢物及代谢通路以探讨其潜在毒性,并结合Lasso回归分析建立模型,筛选出在睾酮暴露秀丽隐杆线虫代谢扰动过程中发挥重要作用的物质。结果表明,环境相关浓度睾酮会导致秀丽隐杆线虫代谢谱的显著变化,引起519种代谢物显著升高和539种代谢物显著下降。对各暴露组显著差异代谢物筛选并对代谢通路进行富集分析,识别了相关代谢通路:鞘脂代谢、甘油磷脂代谢、色氨酸代谢、脂肪酸降解、泛酸与辅酶A的生物合成、半胱氨酸和蛋氨酸代谢、组氨酸代谢、精氨酸和脯氨酸代谢以及嘌呤代谢。其中,嘌呤、氨基酸及脂质代谢在高浓度睾酮暴露组扰动加剧,表明随着睾酮浓度升高,生殖功能受损更为严重。Lasso回归分析结果显示,甲酰基-N-乙酰基-5-甲氧基犬尿胺可能作为秀丽隐杆线虫受睾酮胁迫代谢异常过程中的潜在生物标志物。
  • 加载中
  • Adeel M, Song X M, Wang Y Y, et al. Environmental impact of estrogens on human, animal and plant life:A critical review[J]. Environment International, 2017, 99:107-119
    Arnon S, Dahan O, Elhanany S, et al. Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater[J]. Environmental Science & Technology, 2008, 42(15):5521-5526
    Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1210(1):84-91
    Finlay-Moore O, Hartel P G, Cabrera M L. 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter[J]. Journal of Environmental Quality, 2000, 29(5):1604-1611
    Liu Z H, Kanjo Y, Mizutani S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment:A review[J]. Science of the Total Environment, 2009, 407(18):4975-4985
    Liu X W, Shi J H, Zhang H, et al. Estimating estrogen release and load from humans and livestock in Shanghai, China[J]. Journal of Environmental Quality, 2014, 43(2):568-577
    Tomkins P, Saaristo M, Bertram M G, et al. An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish[J]. Environmental Pollution, 2018, 237:103-110
    Morthorst J E, Holbech H, Bjerregaard P. Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations[J]. Aquatic Toxicology, 2010, 98(4):336-343
    Barbosa I R, Nogueira A J A, Soares A M V M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):757-764
    Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:A platform for studying drug toxicity and gene function[J]. Nature Reviews Drug Discovery, 2002, 1(2):153-161
    李英帅. 应用代谢组学技术进行中医药研究探讨[J]. 安徽中医学院学报, 2008, 27(6):1-5
    耿柠波, 张海军, 王菲迪, 等. 代谢组学技术在环境毒理学研究中的应用[J]. 生态毒理学报, 2016, 11(3):26-35

    Geng N B, Zhang H J, Wang F D, et al. A review on the application of metabonomic approaches in environmental toxicology[J]. Asian Journal of Ecotoxicology, 2016, 11(3):26-35(in Chinese)

    Kaletta T, Hengartner M O. Finding function in novel targets:C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5):387-399
    Salzer L, Witting M. Quo vadis Caenorhabditis elegans metabolomics-A review of current methods and applications to explore metabolism in the nematode[J]. Metabolites, 2021, 11(5):284
    Jenkins M B, Endale D M, Schomberg H H, et al. 17beta-estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation[J]. Journal of Environmental Management, 2009, 90(8):2659-2664
    Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans[J]. Chemistry and Physics of Lipids, 2019, 222:15-22
    Gao H J, Qi G F, Yin R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine[J]. Scientific Reports, 2016, 6:28756
    Green C D, Maceyka M, Cowart L A, et al. Sphingolipids in metabolic disease:The good, the bad, and the unknown[J]. Cell Metabolism, 2021, 33(7):1293-1306
    Lee S, Kang H G, Jeong P S, et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs[J]. The Science of the Total Environment, 2021, 755(Pt 1):144144
    Lazúrová Z, Mitro P. Adenosine-A mediator with multisystemic effects (or a hormone?)[J]. Vnitrni Lekarstvi, 2017, 63(9):617-623
    Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome:A primer for lipid analysis in Caenorhabditis elegans[J]. Archives of Biochemistry and Biophysics, 2016, 589:27-37
    Böttinger L, Horvath S E, Kleinschroth T, et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain super complexes[J]. Journal of Molecular Biology, 2012, 423(5):677-686
    Birner R, Bürgermeister M, Schneiter R, et al. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2001, 12(4):997-1007
    Cappello T, Fernandes D, Maisano M, et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone[J]. Ecotoxicology and Environmental Safety, 2017, 143:166-172
    Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology-When things get out of shape[J]. FEBS Letters, 2021, 595(8):1159-1183
    Sun Y, Sun X P, Zhao L M, et al. DJ-1 deficiency causes metabolic abnormality in ornidazole-induced asthenozoospermia[J]. Reproduction, 2020, 160(6):931-941
    Bauer M A, Carmona-Gutiérrez D, Ruckenstuhl C, et al. Spermidine promotes mating and fertilization efficiency in model organisms[J]. Cell Cycle, 2013, 12(2):346-352
    Rong K, Zheng H, Yang R B, et al. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's Disease in rats[J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(2):e22430
    Tan D X, Manchester L C, Burkhardt S, et al. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2001, 15(12):2294-2296
    Yang M H, Guan S Y, Tao J L, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells[J]. Biology of Reproduction, 2021, 104(6):1322-1336
    Ofosu J, Qazi I H, Fang Y, et al. Use of melatonin in sperm cryopreservation of farm animals:A brief review[J]. Animal Reproduction Science, 2021, 233:106850
    ChaithraShree A R, Ingole S D, Dighe V D, et al. Effect of melatonin on bovine sperm characteristics and ultrastructure changes following cryopreservation[J]. Veterinary Medicine and Science, 2020, 6(2):177-186
    Zhao W R, Ding H R, Hu S, et al. An efficient biocatalytic synthesis of imidazole-4-acetic acid[J]. Biotechnology Letters, 2018, 40(7):1049-1055
    Barros C D S, Livramento J B, Mouro M G, et al. L-arginine reduces nitro-oxidative stress in cultured cells with mitochondrial deficiency[J]. Nutrients, 2021, 13(2):534
    Kharbanda K K, Rogers D D, Mailliard M E, et al. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis:Protection by betaine[J]. Biochemical Pharmacology, 2005, 70(12):1883-1890
    Arumugam M K, Chava S, Rasineni K, et al. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis[J]. Scientific Reports, 2021, 11(1):14693
    Tian R, Yang C, Chai S M, et al. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation[J]. Zoological Research, 2022, 43(2):241-254
    Fang Z J, Pyne S, Pyne N J. Ceramide and sphingosine 1-phosphate in adipose dysfunction[J]. Progress in Lipid Research, 2019, 74:145-159
    Rashki Ghaleno L, Alizadeh A, Drevet J R, et al. Oxidation of sperm DNA and male infertility[J]. Antioxidants, 2021, 10(1):97
    Emer E, Yildiz O, Seyrek M, et al. High-dose testosterone and dehydroepiandrosterone induce cardiotoxicity in rats:Assessment of echocardiographic, morphologic, and oxidative stress parameters[J]. Human & Experimental Toxicology, 2016, 35(5):562-572
    Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, et al. Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood[J]. PLoS One, 2013, 8(8):e71705
    Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility:Current knowledge of pathophysiology and role of antioxidant therapy in disease management[J]. Cellular and Molecular Life Sciences, 2020, 77(1):93-113
    Leonardi R, Zhang Y M, Rock C O, et al. Coenzyme A:Back in action[J]. Progress in Lipid Research, 2005, 44(2-3):125-153
    Tahiliani A G, Beinlich C J. Pantothenic acid in health and disease[J]. Vitamins and Hormones, 1991, 46:165-228
    Ma T, Liu T H, Xie P F, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease[J]. Life Sciences, 2020, 258:118160
    Yin L J, Luo M, Wang R, et al. Mitochondria in sex hormone-induced disorder of energy metabolism in males and females[J]. Frontiers in Endocrinology, 2021, 12:749451
    Sokolova I M, Frederich M, Bagwe R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates[J]. Marine Environmental Research, 2012, 79:1-15
  • 加载中
计量
  • 文章访问数:  1316
  • HTML全文浏览数:  1316
  • PDF下载数:  149
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-28
施盈弛, 王佳, 尹洁晨, 李维溪, 王大勇, 刘冉. 环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响[J]. 生态毒理学报, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
引用本文: 施盈弛, 王佳, 尹洁晨, 李维溪, 王大勇, 刘冉. 环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响[J]. 生态毒理学报, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
Shi Yingchi, Wang Jia, Yin Jiechen, Li Weixi, Wang Dayong, Liu Ran. Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001
Citation: Shi Yingchi, Wang Jia, Yin Jiechen, Li Weixi, Wang Dayong, Liu Ran. Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans[J]. Asian journal of ecotoxicology, 2023, 18(4): 324-337. doi: 10.7524/AJE.1673-5897.20221228001

环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响

    通讯作者: 刘冉,E-mail:ranliu@seu.edu.cn
    作者简介: 施盈弛(1998-),女,硕士研究生,研究方向为环境与劳动卫生学,E-mail:545369270@qq.com
  • 环境医学工程教育部重点实验室, 东南大学公共卫生学院, 南京 210009
基金项目:

2021年江苏省研究生培养创新工程项目(SJCX21_0093)

摘要: 睾酮主要通过禽畜粪便及处理不彻底的废水排放进入外环境,作为典型的内分泌干扰物之一,能够导致环境水体中鱼类雄性化,对环境健康及生态安全产生不利影响。将L1期秀丽隐杆线虫(Caenorhabditis elegans, C. elegans)暴露于环境相关浓度睾酮(0.1、1、10 μg·L-1)48 h,通过超高效液相色谱串联质谱(UPLC-MS/MS)技术检测初级代谢产物,观察生物体代谢活动的变化,筛选出环境相关浓度睾酮暴露后的差异代谢物及代谢通路以探讨其潜在毒性,并结合Lasso回归分析建立模型,筛选出在睾酮暴露秀丽隐杆线虫代谢扰动过程中发挥重要作用的物质。结果表明,环境相关浓度睾酮会导致秀丽隐杆线虫代谢谱的显著变化,引起519种代谢物显著升高和539种代谢物显著下降。对各暴露组显著差异代谢物筛选并对代谢通路进行富集分析,识别了相关代谢通路:鞘脂代谢、甘油磷脂代谢、色氨酸代谢、脂肪酸降解、泛酸与辅酶A的生物合成、半胱氨酸和蛋氨酸代谢、组氨酸代谢、精氨酸和脯氨酸代谢以及嘌呤代谢。其中,嘌呤、氨基酸及脂质代谢在高浓度睾酮暴露组扰动加剧,表明随着睾酮浓度升高,生殖功能受损更为严重。Lasso回归分析结果显示,甲酰基-N-乙酰基-5-甲氧基犬尿胺可能作为秀丽隐杆线虫受睾酮胁迫代谢异常过程中的潜在生物标志物。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回