环境相关浓度睾酮暴露对秀丽隐杆线虫代谢谱的影响
Effects of Exposure to Environmentally Relevant Concentrations of Testosterone on Metabolic Profiles of Caenorhabditis elegans
-
摘要: 睾酮主要通过禽畜粪便及处理不彻底的废水排放进入外环境,作为典型的内分泌干扰物之一,能够导致环境水体中鱼类雄性化,对环境健康及生态安全产生不利影响。将L1期秀丽隐杆线虫(Caenorhabditis elegans, C. elegans)暴露于环境相关浓度睾酮(0.1、1、10 μg·L-1)48 h,通过超高效液相色谱串联质谱(UPLC-MS/MS)技术检测初级代谢产物,观察生物体代谢活动的变化,筛选出环境相关浓度睾酮暴露后的差异代谢物及代谢通路以探讨其潜在毒性,并结合Lasso回归分析建立模型,筛选出在睾酮暴露秀丽隐杆线虫代谢扰动过程中发挥重要作用的物质。结果表明,环境相关浓度睾酮会导致秀丽隐杆线虫代谢谱的显著变化,引起519种代谢物显著升高和539种代谢物显著下降。对各暴露组显著差异代谢物筛选并对代谢通路进行富集分析,识别了相关代谢通路:鞘脂代谢、甘油磷脂代谢、色氨酸代谢、脂肪酸降解、泛酸与辅酶A的生物合成、半胱氨酸和蛋氨酸代谢、组氨酸代谢、精氨酸和脯氨酸代谢以及嘌呤代谢。其中,嘌呤、氨基酸及脂质代谢在高浓度睾酮暴露组扰动加剧,表明随着睾酮浓度升高,生殖功能受损更为严重。Lasso回归分析结果显示,甲酰基-N-乙酰基-5-甲氧基犬尿胺可能作为秀丽隐杆线虫受睾酮胁迫代谢异常过程中的潜在生物标志物。Abstract: Testosterone is mainly discharged into the external environment through livestock manure and incompletely treated wastewater. As one of the typical endocrine disruptors, testosterone can lead to the masculinization of fish in ambient water, and cause adverse effects on environmental health and ecological safety. The L1 larval of Caenorhabditis elegans (C. elegans) were exposed to environmentally relevant concentrations (0.1, 1 and 10 μg·L-1) of testosterone for 48 h. The primary metabolites were detected by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to observe the changes in metabolic activities, screening out the differential metabolites and metabolic pathways and exploring the potential toxicity. Additionally, a model was established with Lasso regression analysis to screen out the metabolites that play an important role in the metabolic disturbance after testosterone exposure in C. elegans. Results showed that 519 metabolites were significantly increased and 539 metabolites were significantly decreased. Furthermore, those alteration of metabolites were analyzed by KEGG pathway enrichment, and main pathways was involved in sphingolipid metabolism, glycerol phospholipid metabolism, tryptophan metabolism, fatty acid degradation, pantothenic acid and coenzyme A biosynthesis, cysteine and methionine metabolism, histidine metabolism, arginine and proline metabolism, and purine metabolism. Among them, the disturbance of purine, amino acid and lipid metabolism was more obvious in 10 μg·L-1 exposure group, indicating that with the increase of testosterone concentration, the reproductive function was more seriously impaired. Lasso regression analysis showed that acetyl-N-formyl-5-methoxykynurenamine may be a potential biomarker in the disturbed metabolism of C. elegans under testosterone exposure.
-
Key words:
- testosterone /
- Caenorhabditis elegans /
- metabonomics
-
-
Adeel M, Song X M, Wang Y Y, et al. Environmental impact of estrogens on human, animal and plant life:A critical review[J]. Environment International, 2017, 99:107-119 Arnon S, Dahan O, Elhanany S, et al. Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater[J]. Environmental Science & Technology, 2008, 42(15):5521-5526 Vulliet E, Wiest L, Baudot R, et al. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008, 1210(1):84-91 Finlay-Moore O, Hartel P G, Cabrera M L. 17β-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter[J]. Journal of Environmental Quality, 2000, 29(5):1604-1611 Liu Z H, Kanjo Y, Mizutani S. Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment:A review[J]. Science of the Total Environment, 2009, 407(18):4975-4985 Liu X W, Shi J H, Zhang H, et al. Estimating estrogen release and load from humans and livestock in Shanghai, China[J]. Journal of Environmental Quality, 2014, 43(2):568-577 Tomkins P, Saaristo M, Bertram M G, et al. An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish[J]. Environmental Pollution, 2018, 237:103-110 Morthorst J E, Holbech H, Bjerregaard P. Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations[J]. Aquatic Toxicology, 2010, 98(4):336-343 Barbosa I R, Nogueira A J A, Soares A M V M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):757-764 Nicholson J K, Connelly J, Lindon J C, et al. Metabonomics:A platform for studying drug toxicity and gene function[J]. Nature Reviews Drug Discovery, 2002, 1(2):153-161 李英帅. 应用代谢组学技术进行中医药研究探讨[J]. 安徽中医学院学报, 2008, 27(6):1-5 耿柠波, 张海军, 王菲迪, 等. 代谢组学技术在环境毒理学研究中的应用[J]. 生态毒理学报, 2016, 11(3):26-35 Geng N B, Zhang H J, Wang F D, et al. A review on the application of metabonomic approaches in environmental toxicology[J]. Asian Journal of Ecotoxicology, 2016, 11(3):26-35(in Chinese)
Kaletta T, Hengartner M O. Finding function in novel targets:C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5):387-399 Salzer L, Witting M. Quo vadis Caenorhabditis elegans metabolomics-A review of current methods and applications to explore metabolism in the nematode[J]. Metabolites, 2021, 11(5):284 Jenkins M B, Endale D M, Schomberg H H, et al. 17beta-estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation[J]. Journal of Environmental Management, 2009, 90(8):2659-2664 Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans[J]. Chemistry and Physics of Lipids, 2019, 222:15-22 Gao H J, Qi G F, Yin R, et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine[J]. Scientific Reports, 2016, 6:28756 Green C D, Maceyka M, Cowart L A, et al. Sphingolipids in metabolic disease:The good, the bad, and the unknown[J]. Cell Metabolism, 2021, 33(7):1293-1306 Lee S, Kang H G, Jeong P S, et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs[J]. The Science of the Total Environment, 2021, 755(Pt 1):144144 Lazúrová Z, Mitro P. Adenosine-A mediator with multisystemic effects (or a hormone?)[J]. Vnitrni Lekarstvi, 2017, 63(9):617-623 Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome:A primer for lipid analysis in Caenorhabditis elegans[J]. Archives of Biochemistry and Biophysics, 2016, 589:27-37 Böttinger L, Horvath S E, Kleinschroth T, et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain super complexes[J]. Journal of Molecular Biology, 2012, 423(5):677-686 Birner R, Bürgermeister M, Schneiter R, et al. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2001, 12(4):997-1007 Cappello T, Fernandes D, Maisano M, et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone[J]. Ecotoxicology and Environmental Safety, 2017, 143:166-172 Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology-When things get out of shape[J]. FEBS Letters, 2021, 595(8):1159-1183 Sun Y, Sun X P, Zhao L M, et al. DJ-1 deficiency causes metabolic abnormality in ornidazole-induced asthenozoospermia[J]. Reproduction, 2020, 160(6):931-941 Bauer M A, Carmona-Gutiérrez D, Ruckenstuhl C, et al. Spermidine promotes mating and fertilization efficiency in model organisms[J]. Cell Cycle, 2013, 12(2):346-352 Rong K, Zheng H, Yang R B, et al. Melatonin and its metabolite N(1)-acetyl-N(1)-formyl-5-methoxykynuramine improve learning and memory impairment related to Alzheimer's Disease in rats[J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(2):e22430 Tan D X, Manchester L C, Burkhardt S, et al. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2001, 15(12):2294-2296 Yang M H, Guan S Y, Tao J L, et al. Melatonin promotes male reproductive performance and increases testosterone synthesis in mammalian Leydig cells[J]. Biology of Reproduction, 2021, 104(6):1322-1336 Ofosu J, Qazi I H, Fang Y, et al. Use of melatonin in sperm cryopreservation of farm animals:A brief review[J]. Animal Reproduction Science, 2021, 233:106850 ChaithraShree A R, Ingole S D, Dighe V D, et al. Effect of melatonin on bovine sperm characteristics and ultrastructure changes following cryopreservation[J]. Veterinary Medicine and Science, 2020, 6(2):177-186 Zhao W R, Ding H R, Hu S, et al. An efficient biocatalytic synthesis of imidazole-4-acetic acid[J]. Biotechnology Letters, 2018, 40(7):1049-1055 Barros C D S, Livramento J B, Mouro M G, et al. L-arginine reduces nitro-oxidative stress in cultured cells with mitochondrial deficiency[J]. Nutrients, 2021, 13(2):534 Kharbanda K K, Rogers D D, Mailliard M E, et al. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis:Protection by betaine[J]. Biochemical Pharmacology, 2005, 70(12):1883-1890 Arumugam M K, Chava S, Rasineni K, et al. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis[J]. Scientific Reports, 2021, 11(1):14693 Tian R, Yang C, Chai S M, et al. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation[J]. Zoological Research, 2022, 43(2):241-254 Fang Z J, Pyne S, Pyne N J. Ceramide and sphingosine 1-phosphate in adipose dysfunction[J]. Progress in Lipid Research, 2019, 74:145-159 Rashki Ghaleno L, Alizadeh A, Drevet J R, et al. Oxidation of sperm DNA and male infertility[J]. Antioxidants, 2021, 10(1):97 Emer E, Yildiz O, Seyrek M, et al. High-dose testosterone and dehydroepiandrosterone induce cardiotoxicity in rats:Assessment of echocardiographic, morphologic, and oxidative stress parameters[J]. Human & Experimental Toxicology, 2016, 35(5):562-572 Ramezani Tehrani F, Noroozzadeh M, Zahediasl S, et al. Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood[J]. PLoS One, 2013, 8(8):e71705 Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility:Current knowledge of pathophysiology and role of antioxidant therapy in disease management[J]. Cellular and Molecular Life Sciences, 2020, 77(1):93-113 Leonardi R, Zhang Y M, Rock C O, et al. Coenzyme A:Back in action[J]. Progress in Lipid Research, 2005, 44(2-3):125-153 Tahiliani A G, Beinlich C J. Pantothenic acid in health and disease[J]. Vitamins and Hormones, 1991, 46:165-228 Ma T, Liu T H, Xie P F, et al. UPLC-MS-based urine nontargeted metabolic profiling identifies dysregulation of pantothenate and CoA biosynthesis pathway in diabetic kidney disease[J]. Life Sciences, 2020, 258:118160 Yin L J, Luo M, Wang R, et al. Mitochondria in sex hormone-induced disorder of energy metabolism in males and females[J]. Frontiers in Endocrinology, 2021, 12:749451 Sokolova I M, Frederich M, Bagwe R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates[J]. Marine Environmental Research, 2012, 79:1-15 -

计量
- 文章访问数: 1316
- HTML全文浏览数: 1316
- PDF下载数: 149
- 施引文献: 0