非抗生素类新污染物影响质粒携带的抗生素抗性基因(ARGs)水平转移研究进展
Nonantibiotic Emerging Contaminants Affecting Horizontal Transfer of Antibiotic Resistance Genes (ARGs) Mediated by Plasmids
-
摘要: 人们通常认为抗生素的选择压力是造成抗生素抗性基因快速扩散的原因,但是越来越多的研究表明环境中非抗生素类新污染物也能够造成抗生素抗性基因快速扩散。本文对非抗生素类新污染物影响质粒携带抗性基因水平转移规律和机制研究进展进行了归纳总结。目前的研究大多集中在内分泌干扰物、药品及个人护理产品以及纳米材料影响R质粒携带抗生素抗性基因水平转移,相关机制主要关注非抗生素类新污染物对活性氧、应激反应以及细胞膜通透性的影响。持久性有机污染物影响质粒携带抗性基因水平转移规律以及非抗生素类新污染物对其他质粒携带的抗生素抗性基因水平转移规律和其他类型的机制可以作为未来的研究方向。Abstract: It is generally believed that the pressure of antibiotic selection is the cause of rapid spread of antibiotic resistance genes (ARGs), but more and more evidences have shown that non-antibiotic emerging contaminants in the environment are also the cause of rapid spread of ARGs. In this paper, the research progress on the rule and mechanism of non-antibiotic emerging contaminants affecting the horizontal transfer of antibiotic resistance genes mediated by plasmids was summarized. At present, most of the researches focus on the laws and mechanisms of endocrine disruptors, drugs and personal care products and nanomaterials affecting the horizontal transfer of ARGs mediated by R plasmid. The mechanisms mainly include the effects of emerging nonantibiotic contaminants on reactive oxygen species, SOS and cell membrane permeability. The horizontal gene transfer law induced by persistent organic pollutants requires attention. And more types of plasmids and transfer mechanisms should be taken as future research directions.
-
Key words:
- antibiotic resistance genes /
- horizontal transfer /
- plasmid /
- emerging contaminants
-
-
Clark M D, Halford Z, Herndon C, et al. Evaluation of antibiotic initiation tools in end-of-life care [J]. The American Journal of Hospice & Palliative Care, 2022, 39(3): 274-281 Efendi R, Sudarnika E, Wibawan I W T, et al. An assessment of knowledge and attitude toward antibiotic misuse by small-scale broiler farmers in Bogor, West Java, Indonesia [J]. Veterinary World, 2022, 15(3): 707-713 颉亚玮, 於驰晟, 李菲菲, 等. 某市污水厂抗生素和抗生素抗性基因的分布特征[J]. 环境科学, 2021, 42(1): 315-322 Xie Y W, Yu C S, Li F F, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in wastewater treatment plants [J]. Environmental Science, 2021, 42(1): 315-322 (in Chinese)
Lu S, Lin C Y, Lei K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in Eastern China [J]. Water Research, 2020, 184: 116187 李敏, 唐剑锋, 陈利顶, 等. 城郊流域源汇景观格局与水体抗生素的关系[J]. 环境科学, 2020, 41(5): 2264-2271 Li M, Tang J F, Chen L D, et al. Relationship between source-sink landscape pattern and antibiotics in surface water in peri-urban watershed [J]. Environmental Science, 2020, 41(5): 2264-2271 (in Chinese)
Fu C X, Xu B T, Chen H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiongan New Area, China, and their relationship with antibiotic resistance genes [J]. The Science of the Total Environment, 2022, 807(Pt 2): 151011 Li F F, Chen L J, Bao Y Y, et al. Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water [J]. The Science of the Total Environment, 2020, 747: 141275 Wang H X, Wang N, Wang B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science & Technology, 2016, 50(5): 2692-2699 Zhang H N, Zhou Y F, Guo S Y, et al. Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae isolated from rural well water in Taian, China, 2014 [J]. Environmental Science and Pollution Research, 2015, 22(15): 11488-11492 Cho I, Blaser M J. The human microbiome: At the interface of health and disease [J]. Nature Reviews Genetics, 2012, 13(4): 260-270 Hidron A I, Edwards J R, Patel J, et al. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007 [J]. Infection Control and Hospital Epidemiology, 2008, 29(11): 996-1011 Pazda M, Kumirska J, Stepnowski P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems - A review [J]. The Science of the Total Environment, 2019, 697: 134023 杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10): 2993-3002 Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2993-3002 (in Chinese)
Jia Y Q, Wang Z Q, Fang D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes [J]. Science of the Total Environment, 2021, 782: 146916 Duckworth D H. “Who discovered bacteriophage?” [J]. Bacteriological Reviews, 1976, 40(4): 793-802 Davison J. Genetic exchange between bacteria in the environment [J]. Plasmid, 1999, 42(2): 73-91 McGowan E. Comment on “Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado” [J]. Environmental Science & Technology, 2007, 41(7): 2651-2652 Lin Z B, Yuan T, Zhou L, et al. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment [J]. Environmental Geochemistry and Health, 2021, 43(5): 1741-1758 Gao H, Zhang L X, Lu Z H, et al. Complex migration of antibiotic resistance in natural aquatic environments [J]. Environmental Pollution, 2018, 232: 1-9 Liao J Q, Huang H N, Chen Y G. CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer [J]. Environment International, 2019, 129: 333-342 Xie S S, Gu A Z, Cen T Y, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Science of the Total Environment, 2019, 683: 116-123 Guo M T, Yuan Q B, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater [J]. Environmental Science & Technology, 2015, 49(9): 5771-5778 Li H, Song R Y, Wang Y Y, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma [J]. Water Research, 2021, 204: 117630 宋峙嶙, 李圆圆, 熊忆茗, 等. 内分泌干扰物测试技术和评估体系[J]. 中国环境科学, 2023, 43(5): 2601-2612 Song S L, Li Y Y, Xiong Y M, et al. Testing techniques and assessment systems for endocrine disrupting chemicals [J]. China Environmental Science, 2023, 43(5): 2601-2612 (in Chinese)
Daughton C G. Pharmaceuticals and Personal Care Products in the Environment: Overarching Issues and Overview [M]// Daughton C G, Jones-Lepp T L. Pharmaceuticals and Care Products in the Environment. Washington DC: American Chemical Society, 2001: 2-38 周培亮, 熊倩, 吴颖琳, 等. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138 Zhou P L, Xiong Q, Wu Y L, et al. Research advances on application and mechanisms of duckweed in bioremediation of PPCPs [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 128-138 (in Chinese)
李敏, 蔡凤珊, 秦瑞欣, 等. 重庆市典型行业废水中16种全氟化合物污染特征[J]. 生态毒理学报, 2021, 16(5): 44-58 Li M, Cai F S, Qin R X, et al. Pollution status of sixteen per- and polyfluoroalkyl substances in wastewater of typical industries in Chongqing City [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 44-58 (in Chinese)
邹义龙, 吴永明, 邓觅, 等. 新型溴代阻燃剂TBB和TBPH的生态毒理研究进展[J]. 生态毒理学报, 2021, 16(2): 72-85 Zou Y L, Wu Y M, Deng M, et al. A review on the ecotoxicology of novel brominated flame retardants TBB and TBPH [J]. Asian Journal of Ecotoxicology, 2021, 16(2): 72-85 (in Chinese)
魏文哲, 罗家怡, 赵佳焱, 等. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103 Wei W Z, Luo J Y, Zhao J Y, et al. Research progress on toxicity of new cyclic disinfection byproducts in drinking water [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 87-103 (in Chinese)
Meng Y, Liu W Y, Fiedler H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes [J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 104 Chinnaiyan P, Thampi S G, Kumar M, et al. Pharmaceutical products as emerging contaminant in water: Relevance for developing nations and identification of critical compounds for Indian environment [J]. Environmental Monitoring and Assessment, 2018, 190(5): 288 Yu Z G, Wang Y, Lu J, et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer [J]. The ISME Journal, 2021, 15(7): 2117-2130 Li Z Q, Gao J F, Guo Y, et al. Enhancement of antibiotic resistance dissemination by artificial sweetener acesulfame potassium: Insights from cell membrane, enzyme, energy supply and transcriptomics [J]. Journal of Hazardous Materials, 2022, 422: 126942 Li X, Wen C, Liu C, et al. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer [J]. Journal of Environmental Sciences (China), 2022, 115: 363-373 Zhang H N, Liu J B, Wang L, et al. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes [J]. Bioengineered, 2021, 12(1): 63-69 Pearce H, Messager S, Maillard J Y. Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus [J]. Journal of Hospital Infection, 1999, 43(2): 101-107 Guo A Y, Zhou Q X, Bao Y Y, et al. Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water [J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127761 Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations [J]. The Science of the Total Environment, 2018, 616-617: 172-178 Wesgate R, Fanning S, Hu Y, et al. Effect of exposure to chlorhexidine residues at “during use” concentrations on antimicrobial susceptibility profile, efflux, conjugative plasmid transfer, and metabolism of Escherichia coli [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(12): e01131-e01120 Jia Y Q, Yang B Q, Shi J R, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force [J]. Pharmacological Research, 2022, 175: 105978 Peterson G, Kumar A, Gart E, et al. Catecholamines increase conjugative gene transfer between enteric bacteria [J]. Microbial Pathogenesis, 2011, 51(1-2): 1-8 Feng M B, Ye C S, Zhang S Q, et al. Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane [J]. Environmental Chemistry Letters, 2022, 20(3): 1553-1560 杨雨桐, 周宏瑞, 杨晓波, 等. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202 Yang Y T, Zhou H R, Yang X B, et al. Bisphenol A promotes conjugative transfer of antibiotic resistance genes mediated by pheromone-responsive plasmid in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 191-202 (in Chinese)
Yang Y T, Yang X B, Zhou H R, et al. Bisphenols promote the pheromone-responsive plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis [J]. Environmental Science & Technology, 2022, 56(24): 17653-17662 Wang Y, Lu J, Mao L K, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera [J]. The ISME Journal, 2019, 13(2): 509-522 Guo Y, Gao J F, Cui Y C, et al. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms [J]. The Science of the Total Environment, 2022, 816: 151599 Yang B Q, Wang Z Q, Jia Y Q, et al. Paclitaxel and its derivative facilitate the transmission of plasmid-mediated antibiotic resistance genes through conjugative transfer [J]. The Science of the Total Environment, 2022, 810: 152245 Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121(Pt 2): 1217-1226 Cen T Y, Zhang X Y, Xie S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms [J]. Environment International, 2020, 138: 105544 Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria [J]. Nature, 2018, 555(7698): 623-628 Wang Y, Lu J, Engelstädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation [J]. The ISME Journal, 2020, 14(8): 2179-2196 纪丽鹏, 王月, 褚福浩, 等. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189 Ji L P, Wang Y, Chu F H, et al. Ecological effects and toxic mechanisms of nanomaterials to microalgae [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 175-189 (in Chinese)
Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications [J]. Water Research, 2008, 42(18): 4591-4602 Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4944-4949 Qiu Z G, Shen Z Q, Qian D, et al. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid [J]. Nanotoxicology, 2015, 9(7): 895-904 Ding C S, Jin M, Ma J, et al. Nano-Al2O3 can mediate transduction-like transformation of antibiotic resistance genes in water [J]. Journal of Hazardous Materials, 2021, 405: 124224 Wang X L, Yang F X, Zhao J, et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes [J]. NanoImpact, 2018, 10: 61-67 Parra B, Tortella G R, Cuozzo S, et al. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids [J]. Ecotoxicology and Environmental Safety, 2019, 169: 662-668 Zhang S, Wang Y, Song H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487 Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. Water Research, 2020, 169: 115229 Guo M T, Tian X B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation [J]. Journal of Hazardous Materials, 2019, 380: 120877 Yu K Q, Chen F R, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer [J]. Environmental Science & Technology, 2020, 54(16): 10012-10021 Liu X M, Tang J C, Song B R, et al. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces [J]. Nanotoxicology, 2019, 13(10): 1422-1436 Liu Y, Gao J F, Wang Y W, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition [J]. Journal of Hazardous Materials, 2022, 432: 128722 Liu Y, Gao J F, Wang Y W, et al. The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126866 Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community [J]. Environmental Pollution, 2021, 268(Pt B): 115903 Pu Q, Fan X T, Sun A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes [J]. Environment International, 2021, 152: 106453 Wang H G, Gong S J, Li X H, et al. SDS coated Fe3O4@MoS2 with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions [J]. Colloids and Surfaces B, Biointerfaces, 2022, 214: 112457 Wang H G, Qi H C, Gong S J, et al. Fe3O4 composited with MoS2 blocks horizontal gene transfer [J]. Colloids and Surfaces B, Biointerfaces, 2020, 185: 110569 Wang H G, Qi H C, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes [J]. Ecotoxicology and Environmental Safety, 2019, 186: 109781 Li G Y, Chen X F, Yin H L, et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes [J]. Environment International, 2020, 136: 105497 Zhang Y, Gu A Z, Cen T Y, et al. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Environment International, 2018, 114: 280-287 周宏瑞, 杨雨桐, 杨晓波, 等. 纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 160-169 Zhou H R, Yang Y T, Yang X B, et al. Molybdenum disulfide promotes pheromone-induced plasmid mediated conjugation transfer of drug resistance genes in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 160-169 (in Chinese)
Shi J H, Wu D, Su Y L, et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate [J]. Environmental Science: Nano, 2020, 7(11): 3536-3546 Loo K Y, Letchumanan V, Law J W F, et al. Incidence of antibiotic resistance in Vibrio spp [J]. Reviews in Aquaculture, 2020, 12(4): 2590-2608 Zha Y Y, Li Z W, Zhong Z, et al. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics [J]. Journal of Hazardous Materials, 2022, 431: 128561 Yuan Q B, Sun R N, Yu P F, et al. UV-aging of microplastics increases proximal ARG donor-recipient adsorption and leaching of chemicals that synergistically enhance antibiotic resistance propagation [J]. Journal of Hazardous Materials, 2022, 427: 127895 He K, Xue B, Yang X B, et al. Low-concentration of trichloromethane and dichloroacetonitrile promote the plasmid-mediated horizontal transfer of antibiotic resistance genes [J]. Journal of Hazardous Materials, 2022, 425: 128030 Mantilla-Calderon D, Plewa M J, Michoud G, et al. Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1 [J]. Environmental Science & Technology, 2019, 53(11): 6520-6528 Li H, Song R Y, Wang Y Y, et al. Environmental free radicals efficiently inhibit the conjugative transfer of antibiotic resistance by altering cellular metabolism and plasmid transfer [J]. Water Research, 2021, 209: 117946 Kashket E R. The proton motive force in bacteria: A critical assessment of methods [J]. Annual Review of Microbiology, 1985, 39: 219-242 Buberg M L, Witsø I L, L’Abée-Lund T M, et al. Zinc and copper reduce conjugative transfer of resistance plasmids from extended-spectrum beta-lactamase-producing Escherichia coli [J]. Microbial Drug Resistance, 2020, 26(7): 842-849 Payasi A. Inhibition of DNA relaxases by Elores to control spreading of resistant gene through conjugation [J]. International Journal of Biochemistry, 2013, 108: 202-206 Costa O Y A, Raaijmakers J M, Kuramae E E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation [J]. Frontiers in Microbiology, 2018, 9: 1636 Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: The role of the EPS matrix [J]. Trends in Microbiology, 2019, 27(11): 915-926 -

计量
- 文章访问数: 2137
- HTML全文浏览数: 2137
- PDF下载数: 219
- 施引文献: 0