典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应
Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish
-
摘要: 全氟丁酸(PFBA)与全氟丁烷磺酸(PFBS)作为长链全氟化合物的替代化学品被广泛应用。2种替代品在环境中的残留量不断增加,对环境生物造成了不可忽视的潜在风险。本文通过分析PFBA与PFBS对斑马鱼体内卵黄蛋白原(VTG)、甲状腺激素三碘甲状腺原氨酸(T3)与四碘甲状腺原氨酸(T4)的影响,研究2种替代品对斑马鱼的内分泌干扰效应和作用机制。结果显示,VTG含量与PFBA和PFBS暴露浓度变化存在剂量-效应关系,雌雄斑马鱼体内血浆及全鱼和头尾匀浆中VTG水平均有上升。PFBA对斑马鱼体内VTG含量存在倒“U”型的剂量-效应关系,而PFBS的VTG含量存在正相关的剂量-效应关系。PFBA不同暴露浓度组对斑马鱼甲状腺素T3、T4水平具有抑制作用,均表现出显著性差异(P<0.01)。PFBS暴露的斑马鱼体内T3和T4的含量存在倒“U”型的剂量-效应关系,高浓度暴露组匀浆中对T3和T4的抑制率最高,达到36.74%和38.20%。结果表明,2种替代化学品PFBA与PFBS对斑马鱼表现出明显的内分泌干扰效应。Abstract: Perfluorobutyric acid (PFBA) and perfluorobutane sulfonic acid (PFBS) are widely used as substitutes for long-chain perfluorocompounds. The residues of the two substitutes in the environment are increasing, which poses an unignorably potential risk to environmental organisms. This study was conducted to figure out endocrine disruption and acting mechanism of the two substitutes on zebrafish by analyzing the impact of PFBA and PFBS on vitellogenin (VTG), thyroid hormones triiodothyronine (T3) and tetraiodothyronine (T4) of zebrafish. The results showed that there was a dose-effect relationship between the content of VTG and the exposure concentration of PFBA and PFBS, and the level of VTG in plasma, whole fish and head-tail homogenate of male and female zebrafish increased. Furthermore, an inverted U-shaped dose-effect relationship between PFBA and VTG content in zebrafish was found, while PFBS showed a positive dose-effect relationship with VTG content. Different exposure concentrations of PFBA inhibited the levels of thyroxine T3 and T4 in zebrafish with significant differences (P<0.01). The contents of T3 and T4 in zebrafish exposed to PFBS have an inverted U-shaped dose-effect relationship, and the inhibition rates of T3 and T4 in the homogenate of high concentration exposure group were the highest, reaching 36.74% and 38.20% respectively. The results demonstrated that the two substitutes, PFBA and PFBS, caused obvious endocrine disrupting effects on zebrafish.
-
-
Olsen G W, Burris J M, Ehresman D J, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers [J]. Environmental Health Perspectives, 2007, 115(9): 1298-1305 Taniyasu S, Kannan K, So M K, et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota [J]. Journal of Chromatography A, 2005, 1093(1-2): 89-97 Lin H J, Taniyasu S, Yamazaki E, et al. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution [J]. Environmental Science & Technology, 2020, 54(22): 14182-14191 Jovicic V, Khan M, Zbogar-Rasic A, et al. Degradation of low concentrated perfluorinated compounds (PFCs) from water samples using non-thermal atmospheric plasma (NTAP) [J]. Energies, 2018, 11(5): 1290 Fagbayigbo B O, Opeolu B O, Fatoki O S, et al. Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS [J]. Environmental Monitoring and Assessment, 2018, 190(6): 346 Chen S, Jiao X C, Gai N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in Eastern China [J]. Environmental Pollution, 2016, 211: 124-131 Lam J C, Lyu J L, Kwok K Y, et al. Perfluoroalkyl substances (PFASs) in marine mammals from the South China Sea and their temporal changes 2002-2014: Concern for alternatives of PFOS? [J]. Environmental Science & Technology, 2016, 50(13): 6728-6736 MacInnis J J, French K, Muir D C, et al. Emerging investigator series: A 14-year depositional ice record of perfluoroalkyl substances in the High Arctic [J]. Environmental Science Processes & Impacts, 2017, 19(1): 22-30 金梦, 刘丽君, 赵波, 等. 长三角地区水体中全氟化合物的污染特征及风险评价[J]. 环境化学, 2023, 42(7): 2153-2162 Jin M, Liu L J, Zhao B, et al. Pollution characteristics and risk assessment of perfluoroalkyl substances in surface water from Yangtze River Delta [J]. Environmental Chemistry, 2023, 42(7): 2153-2162 (in Chinese)
李兵, 马浩天, 贠克明, 等. 全氟化合物的污染现状及分析方法研究进展[J]. 中国司法鉴定, 2022(6): 48-56 Li B, Ma H T, Yun K M, et al. The research progress on the pollution status and analytical methods of perfluoroalkyl substances [J]. Chinese Journal of Forensic Sciences, 2022 (6): 48-56 (in Chinese)
刘世轲, 田浩廷, 刘艳, 等. 土壤与沉积物中全氟化合物污染现状及来源解析研究进展[J]. 安徽农学通报, 2023, 29(2): 122-128 Liu S K, Tian H T, Liu Y, et al. Research progress on the pollution status and source apportionment of polyfluoroalkyl substances in soil and sediment [J]. Anhui Agricultural Science Bulletin, 2023, 29(2): 122-128 (in Chinese)
Yin T R, Chen H T, Reinhard M, et al. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate [J]. Water Research, 2017, 125: 418-426 Wang P, Lu Y L, Wang T Y, et al. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River Estuary, China [J]. Environmental Science and Pollution Research International, 2015, 22(13): 9626-9636 Shi Y L, Vestergren R, Nost T H, et al. Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in crucian carp [J]. Environmental Science & Technology, 2018, 52(8): 4592-4600 Qi Y J, Huo S L, Hu S B, et al. Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China [J]. Environmental Earth Sciences, 2016, 75(5): 432 Sun R, Wu M H, Tang L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95 Zhou Z, Liang Y, Shi Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257 Venkatesan A K, Halden R U. Loss and in situ production of perfluoroalkyl chemicals in outdoor biosolids-soil mesocosms [J]. Environmental Research, 2014, 132: 321-327 Chen L G, Sun J, Zhang H M, et al. Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide[5-octylfuran-2(5H)-one]or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT) [J]. Environmental Science & Technology, 2015, 49(3): 1851-1859 Chen L G, Zhang W P, Ye R, et al. Chronic exposure of marine medaka (Oryzias melastigma) to 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis [J]. Environmental Science & Technology, 2016, 50(8): 4492-4501 Lou Q Q, Zhang Y F, Zhou Z, et al. Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis [J]. Ecotoxicology, 2013, 22(7): 1133-1144 Chen L G, Hu C Y, Tsui M M P, et al. Multigenerational disruption of the thyroid endocrine system in marine medaka after a life-cycle exposure to perfluorobutanesulfonate [J]. Environmental Science & Technology, 2018, 52(7): 4432-4439 王京, 闫振广, 张天旭, 等. BDE-209对斑马鱼肠道的慢性毒性效应[J]. 环境工程技术学报, 2023, 13(1): 413-422 Wang J, Yan Z G, Zhang T X, et al. Chronic toxic effects of BDE-209 on the intestinal tract of zebrafish (Danio rerio) [J]. Journal of Environmental Engineering Technology, 2023, 13(1): 413-422 (in Chinese)
杨瑞泉, 叶婷, 冯雪, 等. 再生水对斑马鱼幼鱼下丘脑-垂体-甲状腺轴相关基因转录水平的影响[J]. 应用与环境生物学报, 2022, 28(1): 208-214 Yang R Q, Ye T, Feng X, et al. Effects of reclaimed water on gene transcription of the hypothalamuspituitary-thyroid axis in zebrafish larvae (Danio rerio) [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 208-214 (in Chinese)
Baumann L, Holbech H, Schmidt-Posthaus H, et al. Does hepatotoxicity interfere with endocrine activity in zebrafish (Danio rerio)? [J]. Chemosphere, 2020, 238: 124589 Sugrue M L, Vella K R, Morales C, et al. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo [J]. Endocrinology, 2010, 151(2): 793-801 Godfrey A, Abdel-moneim A, Sepúlveda M S. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos [J]. Chemosphere, 2017, 181: 710-712 Hu C Y, Liu M Y, Tang L Z, et al. Probiotic intervention mitigates the metabolic disturbances of perfluorobutanesulfonate along the gut-liver axis of zebrafish [J]. Chemosphere, 2021, 284: 131374 Babaei F, Ramalingam R, Tavendale A, et al. Novel blood collection method allows plasma proteome analysis from single zebrafish [J]. Journal of Proteome Research, 2013, 12(4): 1580-1590 程艳, 崔媛, 何平, 等. 全氟辛烷磺酸(PFOS)对斑马鱼血浆和组织匀浆中卵黄蛋白原含量的影响[J]. 生态毒理学报, 2012, 7(1): 65-70 Cheng Y, Cui Y, He P, et al. Effect of perfluorooctane sulfonate (PFOS) on vitellogenin levels in blood plasma and tissue homogenate of zebrafish (Brachydanio rerio) [J]. Asian Journal of Ecotoxicology, 2012, 7(1): 65-70 (in Chinese)
魏继海. 催产激素对尼罗罗非鱼类固醇激素、卵黄蛋白原含量及Vtg mRNA表达的影响[D]. 上海: 上海海洋大学, 2016: 32-33 Wei J H. Effects of hormone oxytocin on content of serum steroid hormones, vitellogenin and vtg mRNA expression in Oreochromis niloticus [D]. Shanghai: Shanghai Ocean University, 2016: 32 -33 (in Chinese)
崔晓莹, 管博, 李正炎. 雌二醇、壬基酚和三丁基锡对草金鱼血浆卵黄蛋白原含量的联合效应[J]. 环境科学学报, 2019, 39(9): 3180-3187 Cui X Y, Guan B, Li Z Y. The combined effects of estradiol, nonylphenol and tributyltin on plasma vitellogenin in goldfish Carassius auratus [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3180-3187 (in Chinese)
邓觅. F-53B对斑马鱼甲状腺功能和抗氧化能力的影响及机制研究[D]. 南昌: 南昌大学, 2018: 3-4 Deng M. Effects of F-53B on thyroid function and antioxidant status and its mechanism in zebrafish [D]. Nanchang: Nanchang University, 2018 : 3-4 (in Chinese)
瞿璟琰, 施华宏, 刘青坡, 等. 四溴双酚-A和五溴酚对红鲫甲状腺激素和脱碘酶的影响[J]. 环境科学学报, 2008, 28(8): 1625-1630 Qu J Y, Shi H H, Liu Q P, et al. Effects of tetrabromobisphenol-A and pentabromophenol on thyroid hormones and deiodinases of goldfish, Carassius auratus [J]. Acta Scientiae Circumstantiae, 2008, 28(8): 1625-1630 (in Chinese)
Welshons W V, Thayer K A, Judy B M, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity [J]. Environmental Health Perspectives, 2003, 111(8): 994-1006 木伟娜. 低剂量三丁基锡和镉联合暴露对鲤鱼甲状腺轴及抗氧化指标的影响[D]. 武汉: 华中农业大学, 2017: 45-46 Mu W N. Effect of low-concentration tributyltin, cadmium and their combination on the hypothalamic-pituitary-thyroid axis and antioxidant index in Cyprinus carpio [D]. Wuhan: Huazhong Agricultural University, 2017: 45 -46 (in Chinese)
刘小燕, 刘珊, 张丽娟, 等. 六溴环十二烷对斑马鱼的甲状腺激素干扰效应研究[J]. 农业环境科学学报, 2017, 36(11): 2192-2198 Liu X Y, Liu S, Zhang L J, et al. Thyroid hormone-disrupting effects of hexabromocyclododecane in zebrafish (Danio rerio) [J]. Journal of Agro-Environment Science, 2017, 36(11): 2192-2198 (in Chinese)
唐欣瑶, 倪梦梅, 朱霞, 等. 全氟丁酸毒性研究进展[J]. 现代预防医学, 2021, 48(17): 3110-3114 Tang X Y, Ni M M, Zhu X, et al. Research progress on toxicity of perfluorobutanoic acid [J]. Modern Preventive Medicine, 2021, 48(17): 3110-3114 (in Chinese)
余果, 孙丽娜, 唐蕊, 等. 全氟丁烷磺酸对其耐受菌胞外聚合物特征的影响[J]. 农业环境科学学报, 2023, 42(5): 1032-1041 Yu G, Sun L N, Tang R, et al. Effects of perfluorobutanesulfonic acid on the extracellular polymeric substances of PFBS-resistant strains [J]. Journal of Agro-Environment Science, 2023, 42(5): 1032-1041 (in Chinese)
杨晓溪. 双酚AF和全氟化合物对斑马鱼的毒性效应研究[D]. 武汉: 华中农业大学, 2014: 26-27 Yang X X. Toxicity of bisphenol AF and perfluorinated chemicals on zebrafish [D]. Wuhan: Huazhong Agricultural University, 2014: 26 -27 (in Chinese)
Zhang S N, Guo X C, Lu S Y, et al. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Environmental Pollution, 2018, 235: 974-982 -

计量
- 文章访问数: 1849
- HTML全文浏览数: 1849
- PDF下载数: 153
- 施引文献: 0