典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应

梁宏仪, 张亚辉, 黄子晏, 杜士林, 张瑾, 赵姗. 典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应[J]. 生态毒理学报, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
引用本文: 梁宏仪, 张亚辉, 黄子晏, 杜士林, 张瑾, 赵姗. 典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应[J]. 生态毒理学报, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
Liang Hongyi, Zhang Yahui, Huang Ziyan, Du Shilin, Zhang Jin, Zhao Shan. Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish[J]. Asian journal of ecotoxicology, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
Citation: Liang Hongyi, Zhang Yahui, Huang Ziyan, Du Shilin, Zhang Jin, Zhao Shan. Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish[J]. Asian journal of ecotoxicology, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001

典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应

    作者简介: 梁宏仪(1999-),女,硕士研究生,研究方向为生态毒理学,E-mail:2905924602@qq.com
    通讯作者: 张亚辉,E-mail:zhangyahui@craes.org.cn; 
  • 基金项目:

    中央级公益性科研院所基本科研业务费专项(2023YSKY-38)

  • 中图分类号: X171.5

Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish

    Corresponding author: Zhang Yahui, zhangyahui@craes.org.cn
  • Fund Project:
  • 摘要: 全氟丁酸(PFBA)与全氟丁烷磺酸(PFBS)作为长链全氟化合物的替代化学品被广泛应用。2种替代品在环境中的残留量不断增加,对环境生物造成了不可忽视的潜在风险。本文通过分析PFBA与PFBS对斑马鱼体内卵黄蛋白原(VTG)、甲状腺激素三碘甲状腺原氨酸(T3)与四碘甲状腺原氨酸(T4)的影响,研究2种替代品对斑马鱼的内分泌干扰效应和作用机制。结果显示,VTG含量与PFBA和PFBS暴露浓度变化存在剂量-效应关系,雌雄斑马鱼体内血浆及全鱼和头尾匀浆中VTG水平均有上升。PFBA对斑马鱼体内VTG含量存在倒“U”型的剂量-效应关系,而PFBS的VTG含量存在正相关的剂量-效应关系。PFBA不同暴露浓度组对斑马鱼甲状腺素T3、T4水平具有抑制作用,均表现出显著性差异(P<0.01)。PFBS暴露的斑马鱼体内T3和T4的含量存在倒“U”型的剂量-效应关系,高浓度暴露组匀浆中对T3和T4的抑制率最高,达到36.74%和38.20%。结果表明,2种替代化学品PFBA与PFBS对斑马鱼表现出明显的内分泌干扰效应。
  • 加载中
  • Olsen G W, Burris J M, Ehresman D J, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers [J]. Environmental Health Perspectives, 2007, 115(9): 1298-1305
    Taniyasu S, Kannan K, So M K, et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota [J]. Journal of Chromatography A, 2005, 1093(1-2): 89-97
    Lin H J, Taniyasu S, Yamazaki E, et al. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution [J]. Environmental Science & Technology, 2020, 54(22): 14182-14191
    Jovicic V, Khan M, Zbogar-Rasic A, et al. Degradation of low concentrated perfluorinated compounds (PFCs) from water samples using non-thermal atmospheric plasma (NTAP) [J]. Energies, 2018, 11(5): 1290
    Fagbayigbo B O, Opeolu B O, Fatoki O S, et al. Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS [J]. Environmental Monitoring and Assessment, 2018, 190(6): 346
    Chen S, Jiao X C, Gai N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in Eastern China [J]. Environmental Pollution, 2016, 211: 124-131
    Lam J C, Lyu J L, Kwok K Y, et al. Perfluoroalkyl substances (PFASs) in marine mammals from the South China Sea and their temporal changes 2002-2014: Concern for alternatives of PFOS? [J]. Environmental Science & Technology, 2016, 50(13): 6728-6736
    MacInnis J J, French K, Muir D C, et al. Emerging investigator series: A 14-year depositional ice record of perfluoroalkyl substances in the High Arctic [J]. Environmental Science Processes & Impacts, 2017, 19(1): 22-30
    金梦, 刘丽君, 赵波, 等. 长三角地区水体中全氟化合物的污染特征及风险评价[J]. 环境化学, 2023, 42(7): 2153-2162

    Jin M, Liu L J, Zhao B, et al. Pollution characteristics and risk assessment of perfluoroalkyl substances in surface water from Yangtze River Delta [J]. Environmental Chemistry, 2023, 42(7): 2153-2162 (in Chinese)

    李兵, 马浩天, 贠克明, 等. 全氟化合物的污染现状及分析方法研究进展[J]. 中国司法鉴定, 2022(6): 48-56 Li B, Ma H T, Yun K M, et al. The research progress on the pollution status and analytical methods of perfluoroalkyl substances [J]. Chinese Journal of Forensic Sciences, 2022

    (6): 48-56 (in Chinese)

    刘世轲, 田浩廷, 刘艳, 等. 土壤与沉积物中全氟化合物污染现状及来源解析研究进展[J]. 安徽农学通报, 2023, 29(2): 122-128

    Liu S K, Tian H T, Liu Y, et al. Research progress on the pollution status and source apportionment of polyfluoroalkyl substances in soil and sediment [J]. Anhui Agricultural Science Bulletin, 2023, 29(2): 122-128 (in Chinese)

    Yin T R, Chen H T, Reinhard M, et al. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate [J]. Water Research, 2017, 125: 418-426
    Wang P, Lu Y L, Wang T Y, et al. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River Estuary, China [J]. Environmental Science and Pollution Research International, 2015, 22(13): 9626-9636
    Shi Y L, Vestergren R, Nost T H, et al. Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in crucian carp [J]. Environmental Science & Technology, 2018, 52(8): 4592-4600
    Qi Y J, Huo S L, Hu S B, et al. Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China [J]. Environmental Earth Sciences, 2016, 75(5): 432
    Sun R, Wu M H, Tang L, et al. Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment [J]. Ecotoxicology and Environmental Safety, 2018, 149: 88-95
    Zhou Z, Liang Y, Shi Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257
    Venkatesan A K, Halden R U. Loss and in situ production of perfluoroalkyl chemicals in outdoor biosolids-soil mesocosms [J]. Environmental Research, 2014, 132: 321-327
    Chen L G, Sun J, Zhang H M, et al. Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide[5-octylfuran-2(5H)-one]or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT) [J]. Environmental Science & Technology, 2015, 49(3): 1851-1859
    Chen L G, Zhang W P, Ye R, et al. Chronic exposure of marine medaka (Oryzias melastigma) to 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis [J]. Environmental Science & Technology, 2016, 50(8): 4492-4501
    Lou Q Q, Zhang Y F, Zhou Z, et al. Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis [J]. Ecotoxicology, 2013, 22(7): 1133-1144
    Chen L G, Hu C Y, Tsui M M P, et al. Multigenerational disruption of the thyroid endocrine system in marine medaka after a life-cycle exposure to perfluorobutanesulfonate [J]. Environmental Science & Technology, 2018, 52(7): 4432-4439
    王京, 闫振广, 张天旭, 等. BDE-209对斑马鱼肠道的慢性毒性效应[J]. 环境工程技术学报, 2023, 13(1): 413-422

    Wang J, Yan Z G, Zhang T X, et al. Chronic toxic effects of BDE-209 on the intestinal tract of zebrafish (Danio rerio) [J]. Journal of Environmental Engineering Technology, 2023, 13(1): 413-422 (in Chinese)

    杨瑞泉, 叶婷, 冯雪, 等. 再生水对斑马鱼幼鱼下丘脑-垂体-甲状腺轴相关基因转录水平的影响[J]. 应用与环境生物学报, 2022, 28(1): 208-214

    Yang R Q, Ye T, Feng X, et al. Effects of reclaimed water on gene transcription of the hypothalamuspituitary-thyroid axis in zebrafish larvae (Danio rerio) [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 208-214 (in Chinese)

    Baumann L, Holbech H, Schmidt-Posthaus H, et al. Does hepatotoxicity interfere with endocrine activity in zebrafish (Danio rerio)? [J]. Chemosphere, 2020, 238: 124589
    Sugrue M L, Vella K R, Morales C, et al. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo [J]. Endocrinology, 2010, 151(2): 793-801
    Godfrey A, Abdel-moneim A, Sepúlveda M S. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos [J]. Chemosphere, 2017, 181: 710-712
    Hu C Y, Liu M Y, Tang L Z, et al. Probiotic intervention mitigates the metabolic disturbances of perfluorobutanesulfonate along the gut-liver axis of zebrafish [J]. Chemosphere, 2021, 284: 131374
    Babaei F, Ramalingam R, Tavendale A, et al. Novel blood collection method allows plasma proteome analysis from single zebrafish [J]. Journal of Proteome Research, 2013, 12(4): 1580-1590
    程艳, 崔媛, 何平, 等. 全氟辛烷磺酸(PFOS)对斑马鱼血浆和组织匀浆中卵黄蛋白原含量的影响[J]. 生态毒理学报, 2012, 7(1): 65-70

    Cheng Y, Cui Y, He P, et al. Effect of perfluorooctane sulfonate (PFOS) on vitellogenin levels in blood plasma and tissue homogenate of zebrafish (Brachydanio rerio) [J]. Asian Journal of Ecotoxicology, 2012, 7(1): 65-70 (in Chinese)

    魏继海. 催产激素对尼罗罗非鱼类固醇激素、卵黄蛋白原含量及Vtg mRNA表达的影响[D]. 上海: 上海海洋大学, 2016: 32-33 Wei J H. Effects of hormone oxytocin on content of serum steroid hormones, vitellogenin and vtg mRNA expression in Oreochromis niloticus [D]. Shanghai: Shanghai Ocean University, 2016: 32

    -33 (in Chinese)

    崔晓莹, 管博, 李正炎. 雌二醇、壬基酚和三丁基锡对草金鱼血浆卵黄蛋白原含量的联合效应[J]. 环境科学学报, 2019, 39(9): 3180-3187

    Cui X Y, Guan B, Li Z Y. The combined effects of estradiol, nonylphenol and tributyltin on plasma vitellogenin in goldfish Carassius auratus [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3180-3187 (in Chinese)

    邓觅. F-53B对斑马鱼甲状腺功能和抗氧化能力的影响及机制研究[D]. 南昌: 南昌大学, 2018: 3-4 Deng M. Effects of F-53B on thyroid function and antioxidant status and its mechanism in zebrafish [D]. Nanchang: Nanchang University, 2018

    : 3-4 (in Chinese)

    瞿璟琰, 施华宏, 刘青坡, 等. 四溴双酚-A和五溴酚对红鲫甲状腺激素和脱碘酶的影响[J]. 环境科学学报, 2008, 28(8): 1625-1630

    Qu J Y, Shi H H, Liu Q P, et al. Effects of tetrabromobisphenol-A and pentabromophenol on thyroid hormones and deiodinases of goldfish, Carassius auratus [J]. Acta Scientiae Circumstantiae, 2008, 28(8): 1625-1630 (in Chinese)

    Welshons W V, Thayer K A, Judy B M, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity [J]. Environmental Health Perspectives, 2003, 111(8): 994-1006
    木伟娜. 低剂量三丁基锡和镉联合暴露对鲤鱼甲状腺轴及抗氧化指标的影响[D]. 武汉: 华中农业大学, 2017: 45-46 Mu W N. Effect of low-concentration tributyltin, cadmium and their combination on the hypothalamic-pituitary-thyroid axis and antioxidant index in Cyprinus carpio [D]. Wuhan: Huazhong Agricultural University, 2017: 45

    -46 (in Chinese)

    刘小燕, 刘珊, 张丽娟, 等. 六溴环十二烷对斑马鱼的甲状腺激素干扰效应研究[J]. 农业环境科学学报, 2017, 36(11): 2192-2198

    Liu X Y, Liu S, Zhang L J, et al. Thyroid hormone-disrupting effects of hexabromocyclododecane in zebrafish (Danio rerio) [J]. Journal of Agro-Environment Science, 2017, 36(11): 2192-2198 (in Chinese)

    唐欣瑶, 倪梦梅, 朱霞, 等. 全氟丁酸毒性研究进展[J]. 现代预防医学, 2021, 48(17): 3110-3114

    Tang X Y, Ni M M, Zhu X, et al. Research progress on toxicity of perfluorobutanoic acid [J]. Modern Preventive Medicine, 2021, 48(17): 3110-3114 (in Chinese)

    余果, 孙丽娜, 唐蕊, 等. 全氟丁烷磺酸对其耐受菌胞外聚合物特征的影响[J]. 农业环境科学学报, 2023, 42(5): 1032-1041

    Yu G, Sun L N, Tang R, et al. Effects of perfluorobutanesulfonic acid on the extracellular polymeric substances of PFBS-resistant strains [J]. Journal of Agro-Environment Science, 2023, 42(5): 1032-1041 (in Chinese)

    杨晓溪. 双酚AF和全氟化合物对斑马鱼的毒性效应研究[D]. 武汉: 华中农业大学, 2014: 26-27 Yang X X. Toxicity of bisphenol AF and perfluorinated chemicals on zebrafish [D]. Wuhan: Huazhong Agricultural University, 2014: 26

    -27 (in Chinese)

    Zhang S N, Guo X C, Lu S Y, et al. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Environmental Pollution, 2018, 235: 974-982
  • 加载中
计量
  • 文章访问数:  1849
  • HTML全文浏览数:  1849
  • PDF下载数:  153
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-23
梁宏仪, 张亚辉, 黄子晏, 杜士林, 张瑾, 赵姗. 典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应[J]. 生态毒理学报, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
引用本文: 梁宏仪, 张亚辉, 黄子晏, 杜士林, 张瑾, 赵姗. 典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应[J]. 生态毒理学报, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
Liang Hongyi, Zhang Yahui, Huang Ziyan, Du Shilin, Zhang Jin, Zhao Shan. Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish[J]. Asian journal of ecotoxicology, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001
Citation: Liang Hongyi, Zhang Yahui, Huang Ziyan, Du Shilin, Zhang Jin, Zhao Shan. Endocrine Disrupting Effects of Typical Short-Chain Perfluorinated Substitutes PFBA and PFBS on Zebrafish[J]. Asian journal of ecotoxicology, 2023, 18(5): 103-111. doi: 10.7524/AJE.1673-5897.20230423001

典型短链全氟替代品PFBA及PFBS对斑马鱼的内分泌干扰效应

    通讯作者: 张亚辉,E-mail:zhangyahui@craes.org.cn; 
    作者简介: 梁宏仪(1999-),女,硕士研究生,研究方向为生态毒理学,E-mail:2905924602@qq.com
  • 1. 中国环境科学研究院环境基准与风险评估国家重点实验室,北京 100012;
  • 2. 中国环境科学研究院环境检测与实验中心,北京 100012;
  • 3. 燕山大学环境与化学工程学院,秦皇岛 066004;
  • 4. 安徽建筑大学环境与能源工程学院,安徽省水污染控制与废水资源化重点实验室,合肥 230601;
  • 5. 杭州研趣信息技术有限公司,杭州 310012;
  • 6. 中机国际工程设计研究院有限责任公司,长沙 410000
基金项目:

中央级公益性科研院所基本科研业务费专项(2023YSKY-38)

摘要: 全氟丁酸(PFBA)与全氟丁烷磺酸(PFBS)作为长链全氟化合物的替代化学品被广泛应用。2种替代品在环境中的残留量不断增加,对环境生物造成了不可忽视的潜在风险。本文通过分析PFBA与PFBS对斑马鱼体内卵黄蛋白原(VTG)、甲状腺激素三碘甲状腺原氨酸(T3)与四碘甲状腺原氨酸(T4)的影响,研究2种替代品对斑马鱼的内分泌干扰效应和作用机制。结果显示,VTG含量与PFBA和PFBS暴露浓度变化存在剂量-效应关系,雌雄斑马鱼体内血浆及全鱼和头尾匀浆中VTG水平均有上升。PFBA对斑马鱼体内VTG含量存在倒“U”型的剂量-效应关系,而PFBS的VTG含量存在正相关的剂量-效应关系。PFBA不同暴露浓度组对斑马鱼甲状腺素T3、T4水平具有抑制作用,均表现出显著性差异(P<0.01)。PFBS暴露的斑马鱼体内T3和T4的含量存在倒“U”型的剂量-效应关系,高浓度暴露组匀浆中对T3和T4的抑制率最高,达到36.74%和38.20%。结果表明,2种替代化学品PFBA与PFBS对斑马鱼表现出明显的内分泌干扰效应。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回