斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异

钱宝留, 孙烽铸, 吕军生, 吕林欢, 孙立伟. 斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异[J]. 生态毒理学报, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
引用本文: 钱宝留, 孙烽铸, 吕军生, 吕林欢, 孙立伟. 斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异[J]. 生态毒理学报, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
Qian Baoliu, Sun Fengzhu, Lv Junsheng, Lv Linhuan, Sun Liwei. Different Response to Toxicity of Microplastics in Zebrafish Larvae at Different Stages of Caudal Fin Regeneration[J]. Asian journal of ecotoxicology, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
Citation: Qian Baoliu, Sun Fengzhu, Lv Junsheng, Lv Linhuan, Sun Liwei. Different Response to Toxicity of Microplastics in Zebrafish Larvae at Different Stages of Caudal Fin Regeneration[J]. Asian journal of ecotoxicology, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002

斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异

    作者简介: 钱宝留(1998-),男,硕士研究生,研究方向为生态毒理学,E-mail:1282232003@qq.com
    通讯作者: 孙立伟,E-mail:sunliwei@zjut.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(22176176)

  • 中图分类号: X171.5

Different Response to Toxicity of Microplastics in Zebrafish Larvae at Different Stages of Caudal Fin Regeneration

    Corresponding author: Sun Liwei, sunliwei@zjut.edu.cn
  • Fund Project:
  • 摘要: 微塑料污染已成为全球性的环境问题。研究证实,水环境中的微塑料可被水生生物摄取,并在不同生物学水平上产生一系列的毒性效应。同时,对于野生生物而言,保持正常的组织修复与再生能力对于个体和种群均极为重要。然而,之前的研究已表明微塑料暴露可抑制斑马鱼幼鱼的尾鳍再生。但是,再生的不同阶段对于微塑料毒性响应是否存在差异则未见报道。本研究以聚苯乙烯微球为微塑料的代表,先通过比较斑马鱼幼鱼在尾鳍再生不同阶段(即断尾前、再生前期和再生后期)暴露于微塑料(3 mg·L-1)后的尾鳍面积以及游泳行为的变化,从尾鳍结构和功能上确定再生不同阶段对微塑料毒性效应的响应差异;进一步地,通过研究免疫系统和再生信号通路关键基因的转录水平变化,初步揭示其中的相关机制。研究发现,微塑料暴露能够导致再生尾鳍面积减少。相较于断尾前或再生后期暴露,再生前期暴露的抑制程度更为显著。对幼鱼游泳行为的影响而言,不同阶段间也有类似的趋势。同时,3个阶段的暴露似乎能下调免疫系统相关基因的转录水平,且再生期2个阶段暴露的影响相较于断尾前暴露更为显著。而对于再生信号通路相关基因而言,其转录水平变化虽然较为复杂,但也呈现再生阶段暴露的影响更为显著的趋势。总之,本研究表明再生阶段暴露可能是微塑料抑制尾鳍再生的重要窗口期,微塑料颗粒和伤口微界面的相互作用在其影响尾鳍再生时具有重要的意义。
  • 加载中
  • Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782
    Granby K, Rainieri S, Rasmussen R R, et al. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax) [J]. Environmental Research, 2018, 164: 430-443
    Koelmans A A, Redondo-Hasselerharm P E, Nor N H M, et al. Risk assessment of microplastic particles [J]. Nature Reviews Materials, 2022, 7(2): 138-152
    Arthur C, Baker J, Bamford H. Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris [R]. Washington DC: National Oceanic and Atmospheric Administration, 2009
    Rochman C M, Kross S M, Armstrong J B, et al. Scientific evidence supports a ban on microbeads [J]. Environmental Science & Technology, 2015, 49(18): 10759-10761
    Ma H, Pu S Y, Liu S B, et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences [J]. Environmental Pollution, 2020, 261: 114089
    Borrelle S B, Ringma J, Law K L, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution [J]. Science, 2020, 369(6510): 1515-1518
    Nava V, Leoni B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function [J]. Water Research, 2021, 188: 116476
    Yoshinari N, Kawakami A. Mature and juvenile tissue models of regeneration in small fish species [J]. The Biological Bulletin, 2011, 221(1): 62-78
    Sehring I M, Weidinger G. Recent advancements in understanding fin regeneration in zebrafish [J]. Wiley Interdisciplinary Reviews Developmental Biology, 2020, 9(1): e367
    Iovine M K. Conserved mechanisms regulate outgrowth in zebrafish fins [J]. Nature Chemical Biology, 2007, 3(10): 613-618
    Pfefferli C, Jaźwińska A. The art of fin regeneration in zebrafish [J]. Regeneration, 2015, 2(2): 72-83
    Gu L Q, Tian L, Gao G, et al. Inhibitory effects of polystyrene microplastics on caudal fin regeneration in zebrafish larvae [J]. Environmental Pollution, 2020, 266(Pt 3): 114664
    Mathew L K, Sengupta S, Kawakami A, et al. Unraveling tissue regeneration pathways using chemical genetics [J]. The Journal of Biological Chemistry, 2007, 282(48): 35202-35210
    Sun L W, Gu L Q, Tan H N, et al. Effects of 17α-ethinylestradiol on caudal fin regeneration in zebrafish larvae [J]. The Science of the Total Environment, 2019, 653: 10-22
    Noyes P D, Haggard D E, Gonnerman G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2015, 145(1): 177-195
    Tegelenbosch R A J, Noldus L P, Richardson M K, et al. Zebrafish embryos and larvae in behavioural assays [J]. Behaviour, 2012, 149(10-12): 1241-1281
    Ingerslev H C, Lunder T, Nielsen M E. Inflammatory and regenerative responses in salmonids following mechanical tissue damage and natural infection [J]. Fish & Shellfish Immunology, 2010, 29(3): 440-450
    Keightley M C, Wang C H, Pazhakh V, et al. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models [J]. The International Journal of Biochemistry & Cell Biology, 2014, 56: 92-106
    Mescher A L, Neff A W, King M W. Inflammation and immunity in organ regeneration [J]. Developmental & Comparative Immunology, 2017, 66: 98-110
    Petrie T A, Strand N S, Yang C T, et al. Macrophages modulate adult zebrafish tail fin regeneration [J]. Development, 2014, 141(13): 2581-2591
    Li L, Yan B, Shi Y Q, et al. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration [J]. The Journal of Biological Chemistry, 2012, 287(30): 25353-25360
    LeBert D C, Huttenlocher A. Inflammation and wound repair [J]. Seminars in Immunology, 2014, 26(4): 315-320
    Wehner D, Weidinger G. Signaling networks organizing regenerative growth of the zebrafish fin [J]. Trends in Genetics, 2015, 31(6): 336-343
    Wehner D, Cizelsky W, Vasudevaro M D, et al. Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin [J]. Cell Reports, 2014, 6(3): 467-481
    Tal T L, Franzosa J A, Tanguay R L. Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish - A mini-review [J]. Gerontology, 2010, 56(2): 231-240
    Science Advice for Policy by European Academies (SAPEA). A scientific perspective on microplastics in nature and society [R]. Berlin: SAPEA, 2019
    Dris R, Imhof H, Sanchez W, et al. Beyond the ocean: Contamination of freshwater ecosystems with (micro-) plastic particles [J]. Environmental Chemistry, 2015, 12(5): 539
  • 加载中
计量
  • 文章访问数:  1604
  • HTML全文浏览数:  1604
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-05-15
钱宝留, 孙烽铸, 吕军生, 吕林欢, 孙立伟. 斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异[J]. 生态毒理学报, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
引用本文: 钱宝留, 孙烽铸, 吕军生, 吕林欢, 孙立伟. 斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异[J]. 生态毒理学报, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
Qian Baoliu, Sun Fengzhu, Lv Junsheng, Lv Linhuan, Sun Liwei. Different Response to Toxicity of Microplastics in Zebrafish Larvae at Different Stages of Caudal Fin Regeneration[J]. Asian journal of ecotoxicology, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002
Citation: Qian Baoliu, Sun Fengzhu, Lv Junsheng, Lv Linhuan, Sun Liwei. Different Response to Toxicity of Microplastics in Zebrafish Larvae at Different Stages of Caudal Fin Regeneration[J]. Asian journal of ecotoxicology, 2023, 18(5): 94-102. doi: 10.7524/AJE.1673-5897.20230515002

斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异

    通讯作者: 孙立伟,E-mail:sunliwei@zjut.edu.cn
    作者简介: 钱宝留(1998-),男,硕士研究生,研究方向为生态毒理学,E-mail:1282232003@qq.com
  • 浙江工业大学环境学院,杭州 310032
基金项目:

国家自然科学基金面上项目(22176176)

摘要: 微塑料污染已成为全球性的环境问题。研究证实,水环境中的微塑料可被水生生物摄取,并在不同生物学水平上产生一系列的毒性效应。同时,对于野生生物而言,保持正常的组织修复与再生能力对于个体和种群均极为重要。然而,之前的研究已表明微塑料暴露可抑制斑马鱼幼鱼的尾鳍再生。但是,再生的不同阶段对于微塑料毒性响应是否存在差异则未见报道。本研究以聚苯乙烯微球为微塑料的代表,先通过比较斑马鱼幼鱼在尾鳍再生不同阶段(即断尾前、再生前期和再生后期)暴露于微塑料(3 mg·L-1)后的尾鳍面积以及游泳行为的变化,从尾鳍结构和功能上确定再生不同阶段对微塑料毒性效应的响应差异;进一步地,通过研究免疫系统和再生信号通路关键基因的转录水平变化,初步揭示其中的相关机制。研究发现,微塑料暴露能够导致再生尾鳍面积减少。相较于断尾前或再生后期暴露,再生前期暴露的抑制程度更为显著。对幼鱼游泳行为的影响而言,不同阶段间也有类似的趋势。同时,3个阶段的暴露似乎能下调免疫系统相关基因的转录水平,且再生期2个阶段暴露的影响相较于断尾前暴露更为显著。而对于再生信号通路相关基因而言,其转录水平变化虽然较为复杂,但也呈现再生阶段暴露的影响更为显著的趋势。总之,本研究表明再生阶段暴露可能是微塑料抑制尾鳍再生的重要窗口期,微塑料颗粒和伤口微界面的相互作用在其影响尾鳍再生时具有重要的意义。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回