F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究

赵芳, 严骁, 何绵, 王远芳, 康亭亭, 蔡凤珊, 郑晶, 谢春. F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究[J]. 生态毒理学报, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
引用本文: 赵芳, 严骁, 何绵, 王远芳, 康亭亭, 蔡凤珊, 郑晶, 谢春. F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究[J]. 生态毒理学报, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
Zhao Fang, Yan Xiao, He Mian, Wang Yuanfang, Kang Tingting, Cai Fengshan, Zheng Jing, Xie Chun. Cytotoxic Effects of F-53B on Human Hepatoma Cells HepG2 and Hep3B[J]. Asian journal of ecotoxicology, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
Citation: Zhao Fang, Yan Xiao, He Mian, Wang Yuanfang, Kang Tingting, Cai Fengshan, Zheng Jing, Xie Chun. Cytotoxic Effects of F-53B on Human Hepatoma Cells HepG2 and Hep3B[J]. Asian journal of ecotoxicology, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001

F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究

    作者简介: 赵芳(1998-),女,硕士研究生,研究方向为劳动卫生与环境卫生,E-mail:fangzhao1217@163.com
    通讯作者: 郑晶(1986-),男,博士,研究员,主要研究方向为环境污染物的健康效应机制。E-mail:zhengjing@scies.org; 
  • 基金项目:

    国家自然科学基金资助项目(42007392,42077404,4222711)

  • 中图分类号: X171.5

Cytotoxic Effects of F-53B on Human Hepatoma Cells HepG2 and Hep3B

    Corresponding author: Zheng Jing, zhengjing@scies.org
  • Fund Project:
  • 摘要: 研究氯化多氟烷基醚磺酸(6:2 chlorinated polyfluorinated ether sulfonate,商品名F-53B)对人肝癌细胞HepG2和Hep3B的毒性效应,并初步探讨其作用机制。选择常用的全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)和全氟辛酸(perfluorooctanoic acid,PFOA)与F-53B同时进行毒性评估,检测细胞形态、细胞活力、凋亡、活性氧(reactive oxygen species,ROS),过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、凋亡相关因子(BaxCaspase-3PARPCaspase-9等)表达水平。F-53B对细胞活性具有明显的抑制作用且毒力显著大于PFOS,并呈剂量依赖性;F-53B显著诱导ROS释放和细胞凋亡,并降低了抗氧化酶CAT活性;进一步证明促凋亡相关因子(BaxCaspase-3PARPCaspase-9)表达增加,抑制凋亡因子Bcl-2表达水平降低。F-53B可诱导细胞凋亡和氧化应激,且线粒体内在途径可能参与细胞毒性作用。
  • 加载中
  • Krafft M P,Riess J G.Selected physicochemical aspects of poly-and perfluoroalkylated substances relevant to performance,environment and sustainability-part one[J].Chemosphere,2015,129:4-19
    Bossi R,Strand J,Sortkjaer O,et al.Perfluoroalkyl compounds in Danish wastewater treatment plants and aquaticenvironments[J].Environment International,2008,34(4):443-450
    Chen H,Zhang C,Han J B,et al.PFOS and PFOA in influents,effluents,and biosolids of Chinese wastewatertreatment plants and effluent-receiving marine environments[J].Environmental Pollution,2012,170:26-31
    Lin C Y,Chen P C,Lin Y C,et al.Association among serum perfluoroalkyl chemicals,glucose homeostasis,andmetabolic syndrome in adolescents and adults[J].Diabetes Care,2009,32(4):702-707
    Lv Q Y,Wan B,Guo L H,et al.In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice:Identification of T-cell receptor and calcium-mediated signalingpathway disruption through gene expression profiling of the spleen[J].Chemico-Biological Interactions,2015,240:84-93
    Reismann D,Stefanowski J,Günther R,et al.Longitudinal intravital imaging of the femoral bone marrow revealsplasticity within marrow vasculature[J].Nature Communications,2017,8(1):2153
    Saikat S,Kreis I,Davies B,et al.The impact of PFOS onhealth in the general population:A review[J].Environmental Science Processes&Impacts,2013,15(2):329-335
    Steenland K,Tinker S,Frisbee S,et al.Association of perfluorooctanoic acid and perfluorooctane sulfonate withserum lipids among adults living near a chemical plant[J].American Journal of Epidemiology,2009,170(10):1268-1278
    Wang Y,Shi Y L,Cai Y Q.Spatial distribution,seasonalvariation and risks of legacy and emerging per-and polyfluoroalkyl substances in urban surface water in Beijing,China[J].The Science of the Total Environment,2019,673:177-183
    Liu Z Y,Lu Y L,Wang P,et al.Pollution pathways andrelease estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and EasternChina[J].The Science of the Total Environment,2017,580:1247-1256
    Huang J,Liu Y,Wang Q Y,et al.Concentration-dependent toxicokinetics of novel PFOS alternatives and theirchronic combined toxicity in adult zebrafish[J].The Science of the Total Environment,2022,839:156388
    Ti B W,Li L,Liu J G,et al.Global distribution potentialand regional environmental risk of F-53B[J].The Science of the Total Environment,2018,640-641:1365-1371
    Gebbink W A,Bossi R,Rigét F F,et al.Observation of emerging per-and polyfluoroalkyl substances (PFASs) inGreenland marine mammals[J].Chemosphere,2016,144:2384-2391
    Pan Y T,Zhang H X,Cui Q Q,et al.Worldwide distribution of novel perfluoroether carboxylic and sulfonic acidsin surface water[J].Environmental Science&Technology,2018,52(14):7621-7629
    Wu Y M,Deng M,Jin Y X,et al.Toxicokinetics and toxic effects of a Chinese PFOS alternative F-53B in adultzebrafish[J].Ecotoxicology and Environmental Safety,2019,171:460-466
    Gomis M I,Wang Z Y,Scheringer M,et al.A modelingassessment of the physicochemical properties and environmental fate of emerging and novel per-and polyfluoroalkyl substances[J].The Science of the Total Environment,2015,505:981-991
    Wang Y,Shi Y L,Vestergren R,et al.Using hair,nail andurine samples for human exposure assessment of legacyand emerging per-and polyfluoroalkyl substances[J].TheScience of the Total Environment,2018,636:383-391
    Mi X,Yang Y Q,Zeeshan M,et al.Serum levels of perand polyfluoroalkyl substances alternatives and blood pressure by sex status:Isomers of C8 health project inChina[J].Chemosphere,2020,261:127691
    Han X,Meng L L,Zhang G X,et al.Exposure to noveland legacy per-and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes:A case-controlstudy in East China[J].Environment International,2021,156:106637
    Shi Y L,Vestergren R,Xu L,et al.Human exposure andelimination kinetics of chlorinated polyfluoroalkyl ethersulfonic acids (Cl-PFESAs)[J].Environmental Science&Technology,2016,50(5):2396-2404
    Cui Q Q,Pan Y T,Wang J H,et al.Exposure to per-andpolyfluoroalkyl substances (PFASs) in serum versus semen and their association with male reproductive hormones[J].Environmental Pollution,2020,266(Pt 2):115330
    Cong J P,Chu C,Li Q Q,et al.Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults[J].Environment International,2021,155:106596
    Shi G H,Cui Q Q,Wang J X,et al.Chronic exposure to6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish anddisrupted the PPAR signaling pathway in their of fspring[J].Environmental Pollution,2019,249:550-559
    Zhang Q,Liu W,Niu Q,et al.Effects of perfluorooctanesulfonate and its alternatives on long-term potentiation inthe hippocampus CA1 region of adult rats in vivo[J].Toxicology Research,2016,5(2):539-546
    Yi S J,Chen P Y,Yang L P,et al.Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae:Implication of structural specificity[J].Environment International,2019,133(Pt B):105262
    Wang S W,Huang J,Yang Y,et al.First report of a Chinese PFOS alternative overlooked for 30 years:Its toxicity,persistence,and presence in the environment[J].Environmental Science&Technology,2013,47(18):10163-10170
    Zhang B,He Y,Yang G,et al.Legacy and emerging polyand perfluoroalkyl substances in finless porpoises fromEast China Sea:Temporal trends and tissue-specific accumulation[J].Environmental Science&Technology,2022,56(10):6113-6122
    Zhang H X,Zhou X J,Sheng N,et al.Subchronic hepatotoxicity effects of 6:2 chlorinated polyfluorinated ethersulfonate (6:2 Cl-PFESA),a novel perfluorooctanesulfonate (PFOS) alternative,on adult male mice[J].Environmental Science&Technology,2018,52(21):12809-12818
    Sheng N,Cui R N,Wang J H,et al.Cytotoxicity of novelfluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacityto human liver fatty acid binding protein[J].Archives of Toxicology,2018,92(1):359-369
    Valko M,Rhodes C J,Moncol J,et al.Free radicals,metals and antioxidants in oxidative stress-induced cancer[J].Chemico-Biological Interactions,2006,160(1):1-40
    Wu Y M,Deng M,Jin Y X,et al.Uptake and elimination of emerging polyfluoroalkyl substance F-53B in zebrafishlarvae:Response of oxidative stress biomarkers[J].Chemosphere,2019,215:182-188
    Wang J,Wang J X,Xu C,et al.Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes[J].Journal of Hazardous Materials,2016,307:173-183
    Zheng J L,Yuan S S,Wu C W,et al.Chronic waterbornezinc and cadmium exposures induced different responsestowards oxidative stress in the liver of zebrafish[J].Aquatic Toxicology,2016,177:261-268
    Mandraffino G,Sardo M A,Riggio S,et al.Smoke exposure and circulating progenitor cells:Evidence for modulation of antioxidant enzymes and cell count[J].ClinicalBiochemistry,2010,43(18):1436-1442
    曹亚衡,程瑞文.RSV诱导非小细胞肺癌A549细胞氧化应激的分子机制[J].生物技术,2022,32(1):55-61

    ,5Cao Y H,Cheng R W.Molecular mechanism of RSV-induced oxidative stress in non-small cell lung cancer A549cells[J].Biotechnology,2022,32(1):55-61,5(in Chinese)

    Wu Y M,Huang J,Deng M,et al.Acute exposure to environmentally relevant concentrations of Chinese PFOSalternative F-53B induces oxidative stress in early developing zebrafish[J].Chemosphere,2019,235:945-951
    Wang Y,Branicky R,NoëA,et al.Superoxide dismutases:Dual roles in controlling ROS damage and regulatingROS signaling[J].The Journal of Cell Biology,2018,217(6):1915-1928
    Kiraz Y,Adan A,Kartal Yandim M,et al.Major apoptoticmechanisms and genes involved in apoptosis[J].TumourBiology,2016,37(7):8471-8486
    Wu C C,Bratton S B.Regulation of the intrinsic apoptosis pathway by reactive oxygen species[J].Antioxidants&Redox Signaling,2013,19(6):546-558
  • 加载中
计量
  • 文章访问数:  1144
  • HTML全文浏览数:  1144
  • PDF下载数:  178
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-10-11
  • 录用日期:  2024-01-08
赵芳, 严骁, 何绵, 王远芳, 康亭亭, 蔡凤珊, 郑晶, 谢春. F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究[J]. 生态毒理学报, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
引用本文: 赵芳, 严骁, 何绵, 王远芳, 康亭亭, 蔡凤珊, 郑晶, 谢春. F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究[J]. 生态毒理学报, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
Zhao Fang, Yan Xiao, He Mian, Wang Yuanfang, Kang Tingting, Cai Fengshan, Zheng Jing, Xie Chun. Cytotoxic Effects of F-53B on Human Hepatoma Cells HepG2 and Hep3B[J]. Asian journal of ecotoxicology, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001
Citation: Zhao Fang, Yan Xiao, He Mian, Wang Yuanfang, Kang Tingting, Cai Fengshan, Zheng Jing, Xie Chun. Cytotoxic Effects of F-53B on Human Hepatoma Cells HepG2 and Hep3B[J]. Asian journal of ecotoxicology, 2024, 19(2): 232-241. doi: 10.7524/AJE.1673-5897.20231011001

F-53B对人肝癌细胞HepG2和Hep3B的细胞毒性效应研究

    通讯作者: 郑晶(1986-),男,博士,研究员,主要研究方向为环境污染物的健康效应机制。E-mail:zhengjing@scies.org; 
    作者简介: 赵芳(1998-),女,硕士研究生,研究方向为劳动卫生与环境卫生,E-mail:fangzhao1217@163.com
  • 1. 贵州医科大学公共卫生与健康学院,环境污染与疾病监控教育部重点实验室,贵阳 561113;
  • 2. 生态环境部华南环境科学研究所新污染物研究团队,国家环境保护环境污染健康风险评价重点实验室,广州 510655;
  • 3. 中山大学第七附属医院科研中心,深圳 518000
基金项目:

国家自然科学基金资助项目(42007392,42077404,4222711)

摘要: 研究氯化多氟烷基醚磺酸(6:2 chlorinated polyfluorinated ether sulfonate,商品名F-53B)对人肝癌细胞HepG2和Hep3B的毒性效应,并初步探讨其作用机制。选择常用的全氟辛烷磺酸(perfluorooctane sulfonate,PFOS)和全氟辛酸(perfluorooctanoic acid,PFOA)与F-53B同时进行毒性评估,检测细胞形态、细胞活力、凋亡、活性氧(reactive oxygen species,ROS),过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、凋亡相关因子(BaxCaspase-3PARPCaspase-9等)表达水平。F-53B对细胞活性具有明显的抑制作用且毒力显著大于PFOS,并呈剂量依赖性;F-53B显著诱导ROS释放和细胞凋亡,并降低了抗氧化酶CAT活性;进一步证明促凋亡相关因子(BaxCaspase-3PARPCaspase-9)表达增加,抑制凋亡因子Bcl-2表达水平降低。F-53B可诱导细胞凋亡和氧化应激,且线粒体内在途径可能参与细胞毒性作用。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回