干细胞在纳米颗粒物毒性机制研究中的应用

木拉提·居来提, 崔婷婷, 那迪热·尼加提, 胡博文. 干细胞在纳米颗粒物毒性机制研究中的应用[J]. 生态毒理学报, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
引用本文: 木拉提·居来提, 崔婷婷, 那迪热·尼加提, 胡博文. 干细胞在纳米颗粒物毒性机制研究中的应用[J]. 生态毒理学报, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
Mulati Julaiti, Cui Tintin, Nadire Nijiati, Hu Bowen. Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
Citation: Mulati Julaiti, Cui Tintin, Nadire Nijiati, Hu Bowen. Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001

干细胞在纳米颗粒物毒性机制研究中的应用

    作者简介: 木拉提·居来提(2000-),男,硕士研究生,研究方向为干细胞毒理学,E-mail:mulatijulaiti@163.com
    通讯作者: 胡博文(1993-),男,博士,副教授,硕士生导师,主要研究方向为干细胞毒理学。E-mail:bowenhu_tc@163.com
  • 基金项目:

    新疆维吾尔自治区杰出青年项目基金(2022D01E52);国家自然科学基金青年项目(22206162);新疆维吾尔自治区天山创新团队计划(2022D1400)

  • 中图分类号: X171.5

Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms

    Corresponding author: Hu Bowen, bowenhu_tc@163.com
  • Fund Project:
  • 摘要: 纳米颗粒物因其优异的性能在各个领域中都得到了广泛的应用。然而,这些纳米颗粒物的潜在健康风险,尤其是对胎儿发育的影响也受到越来越广泛的关注。干细胞的多向分化的特点使其逐渐成为了评估纳米颗粒物的安全性和发育毒性的有力工具。本综述深入分析了干细胞在金属和非金属纳米粒子的发育毒性研究中的现状。深入探讨了具有不同特性(如尺寸、形状、表面电荷等)的纳米颗粒物对干细胞的影响,以及由此产生的毒性效应的差异。最后强调了干细胞来源的类器官在纳米毒理学的研究中的潜力,为毒理学研究提供了更加准确的毒性评价模型。
  • 加载中
  • Chen N, Wang H, Huang Q, et al. Long-term effects of nanoparticles on nutrition and metabolism [J]. Small, 2014, 10(18): 3603-3611
    Kerativitayanan P, Carrow J K, Gaharwar A K. Nanomaterials for engineering stem cell responses [J]. Advanced Healthcare Materials, 2015, 4(11): 1600-1627
    Schaeublin N M, Braydich-Stolle L K, Schrand A M, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity [J]. Nanoscale, 2011, 3(2): 410-420
    Wang W Q, Gaus K, Tilley R D, et al. The impact of nanoparticle shape on cellular internalisation and transport: What do the different analysis methods tell us? [J]. Materials Horizons, 2019, 6(8): 1538-1547
    Faiola F, Yin N Y, Yao X L, et al. The rise of stem cell toxicology [J]. Environmental Science & Technology, 2015, 49(10): 5847-5848
    Hu B W, Cheng Z W, Liang S X. Advantages and prospects of stem cells in nanotoxicology [J]. Chemosphere, 2022, 291(Pt 2): 132861
    Alshatwi A A, Subbarayan P V, Ramesh E, et al. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells [J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(1): 1-10
    Nogueira D R, Rolim C M, Farooqi A A. Nanoparticle induced oxidative stress in cancer cells: Adding new pieces to an incomplete jigsaw puzzle [J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(12): 4739-4743
    Shin T H, Seo C, Lee D Y, et al. Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species [J]. Archives of Toxicology, 2019, 93(5): 1201-1212
    Zhao H, Chen L, Zhong G S, et al. Titanium dioxide nanoparticles induce mitochondrial dynamic imbalance and damage in HT22 cells [J]. Journal of Nanomaterials, 2019, 2019: 4607531
    Paciorek P, Z·uberek M, Grzelak A. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles [J]. Materials, 2020, 13(11): 2460
    de Oliveira Mallia J, Galea R, Nag R, et al. Nanoparticle food applications and their toxicity: Current trends and needs in risk assessment strategies [J]. Journal of Food Protection, 2022, 85(2): 355-372
    Jia J B, Li F F, Zhou H Y, et al. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice [J]. Environmental Science & Technology, 2017, 51(16): 9334-9343
    Peng H, Zhang X H, Wei Y, et al. Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line [J]. Journal of Nanomaterials, 2012, 2012: 160145
    Yin N Y, Hu B W, Yang R J, et al. Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro [J]. Journal of Interdisciplinary Nanomedicine, 2018, 3(3): 133-145
    Huang Y, Guo L L, Cao C L, et al. Silver nanoparticles exposure induces developmental neurotoxicity in hiPSC-derived cerebral organoids [J]. The Science of the Total Environment, 2022, 845: 157047
    Hu B W, Yin N Y, Yang R J, et al. Silver nanoparticles (AgNPs) and AgNO3 perturb the specification of human hepatocyte-like cells and cardiomyocytes [J]. The Science of the Total Environment, 2020, 725: 138433
    Guo J F, Rahme K, He Y, et al. Gold nanoparticles enlighten the future of cancer theranostics [J]. International Journal of Nanomedicine, 2017, 12: 6131-6152
    Kumar D, Mutreja I, Chitcholtan K, et al. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells [J]. Nanotechnology, 2017, 28(47): 475101
    Söderstjerna E, Johansson F, Klefbohm B, et al. Gold- and silver nanoparticles affect the growth characteristics of human embryonic neural precursor cells [J]. PLoS One, 2013, 8(3): e58211
    Nabi S U, Ali S I, Rather M A, et al. Organoids: A new approach in toxicity testing of nanotherapeutics [J]. Journal of Applied Toxicology, 2022, 42(1): 52-72
    Lee J, Lilly G D, Doty R C, et al. In vitro toxicity testing of nanoparticles in 3D cell culture [J]. Small, 2009, 5(10): 1213-1221
    Peng H S, Wang C, Xu X Y, et al. An intestinal Trojan horse for gene delivery [J]. Nanoscale, 2015, 7(10): 4354-4360
    Senut M C, Zhang Y H, Liu F C, et al. Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives [J]. Small, 2016, 12(5): 631-646
    Xia Z H, Li J Y, Zhang J M, et al. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids [J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95
    Yi C X, Yu Z H, Ren Q, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy [J]. Photodiagnosis and Photodynamic Therapy, 2020, 30: 101694
    Gharpure S, Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996
    Ahamed M, Akhtar M J, Majeed Khan M A M, et al. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2) [J]. Colloids and Surfaces B, Biointerfaces, 2016, 148: 665-673
    Chen Z Y, Yang Y C, Wang B J, et al. Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae [J]. Ecotoxicology and Environmental Safety, 2022, 243: 113967
    Subramanian R, Sabeena G K, Ponnanikajamideen M, et al. Synthesis of green zinc oxide nanoparticles mediated by Syzygium cumini induced developmental deformation in embryo toxicity of (Danio rerio) zebrafish [J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2022, 41(12): 3971-3980
    Ickrath P, Wagner M, Scherzad A, et al. Time-dependent toxic and genotoxic effects of zinc oxide nanoparticles after long-term and repetitive exposure to human mesenchymal stem cells [J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1590
    Orazizadeh M, Khodadadi A, Bayati V, et al. In vitro toxic effects of zinc oxide nanoparticles on rat adipose tissue-derived mesenchymal stem cells [J]. Cell Journal, 2015, 17(3): 412-421
    Liu L L, Wang J K, Zhang J Q, et al. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy [J]. Cell Biology and Toxicology, 2023, 39(1): 259-275
    Li Y, Yan J, Ding W, et al. Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles [J]. Mutagenesis, 2017, 32(1): 33-46
    Iavicoli I, Leso V, Fontana L, et al. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies [J]. European Review for Medical and Pharmacological Sciences, 2011, 15(5): 481-508
    Cichoz·-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases [J]. World Journal of Gastroenterology, 2014, 20(25): 8082-8091
    Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, et al. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles [J]. Journal of Materials Science Materials in Medicine, 2022, 33(5): 41
    Cao X Q, Han Y H, Gu M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations [J]. Small, 2020, 16(36): e2001858
    Zhang L P, He Y L, Dong L L, et al. Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles [J]. Cell Proliferation, 2023, 56(8): e13427
    Oh S, Brammer K S, Li Y S, et al. Stem cell fate dictated solely by altered nanotube dimension [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130-2135
    Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Letters, 2007, 7(6): 1686-1691
    Tong Z C, Liu Y C, Xia R Z, et al. F-actin regulates osteoblastic differentiation of mesenchymal stem cells on TiO2 nanotubes through MKL1 and YAP/TAZ [J]. Nanoscale Research Letters, 2020, 15(1): 183
    Park J, Bauer S, Schlegel K A, et al. TiO2 nanotube surfaces: 15 nm—An optimal length scale of surface topography for cell adhesion and differentiation [J]. Small, 2009, 5(6): 666-671
    Pan L, Lee Y M, Lim T K, et al. Quantitative proteomics study reveals changes in the molecular landscape of human embryonic stem cells with impaired stem cell differentiation upon exposure to titanium dioxide nanoparticles [J]. Small, 2018, 14(23): e1800190
    Krug H F, Wick P. Nanotoxicology: An interdisciplinary challenge [J]. Angewandte Chemie, 2011, 50(6): 1260-1278
    Mashayekhi S, Rasoulpoor S, Shabani S, et al. Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells [J]. International Journal of Pharmaceutics, 2020, 587: 119656
    Li X Y, Li Y, Lv S Q, et al. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model [J]. Chemosphere, 2022, 300: 134633
    Zhu Y, Zhang Y K, Li Y B, et al. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes [J]. Journal of Hazardous Materials, 2022, 434: 128820
    Mahmoud A M, Desouky E M, Hozayen W G, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats [J]. Biomolecules, 2019, 9(10): 528
    Yang X, Liu X J, Li Y Y, et al. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 81: 341-348
    Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice [J]. Nature Nanotechnology, 2011, 6(5): 321-328
    Vranic S, Shimada Y, Ichihara S, et al. Toxicological evaluation of SiO2 nanoparticles by zebrafish embryo toxicity test [J]. International Journal of Molecular Sciences, 2019, 20(4): 882
    Periasamy V S, Athinarayanan J, Akbarsha M A, et al. Silica nanoparticles induced metabolic stress through EGR1, CCND, and E2F1 genes in human mesenchymal stem cells [J]. Applied Biochemistry and Biotechnology, 2015, 175(2): 1181-1192
    Mousavi M, Hakimian S, Mustafa T A, et al. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: Biophysical, theoretical and cellular studies [J]. International Journal of Nanomedicine, 2019, 14: 5355-5368
    Park S B, Jung W H, Kim K Y, et al. Toxicity assessment of SiO2 and TiO2 in normal colon cells, in vivo and in human colon organoids [J]. Molecules, 2020, 25(16): 3594
    Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents: A minireview [J]. Nanoscale Horizons, 2019, 4(1): 117-137
    Chen H Q, Zhao R F, Wang B, et al. Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: Association with the changes in gut microbiota in mice [J]. Advanced Healthcare Materials, 2018, 7(13): e1701313
    Song G D, Guo X S, Zong X L, et al. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats [J]. Dental Materials Journal, 2019, 38(1): 127-135
    Palmer B C, Phelan-Dickenson S J, DeLouise L A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation [J]. Particle and Fibre Toxicology, 2019, 16(1): 3
    Kim J E, Cho M H. Effects of multiwall carbon nanotubes on premature kidney aging: Biochemical and histological analysis [J]. Toxics, 2023, 11(4): 373
    Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development [J]. ACS Nano, 2011, 5(6): 4624-4633
    Ema M, Hougaard K S, Kishimoto A, et al. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review [J]. Nanotoxicology, 2016, 10(4): 391-412
    Jiang Y, Gong H S, Jiang S H, et al. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids [J]. The Science of the Total Environment, 2020, 748: 141384
    Mia M B, Saxena R K. Toxicity of poly-dispersed single-walled carbon nanotubes on bone marrow derived hematopoietic stem and progenitor cells [J]. Current Research in Toxicology, 2021, 2: 82-92
    Periasamy V S, Athinarayanan J, Alfawaz M A, et al. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes [J]. Chemosphere, 2016, 144: 275-284
    Feng Z Q, Yan K, Shi C M, et al. Neurogenic differentiation of adipose derived stem cells on graphene-based mat [J]. Materials Science & Engineering C, Materials for Biological Applications, 2018, 90: 685-692
    Yang L T, Chueng S D, Li Y, et al. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy [J]. Nature Communications, 2018, 9(1): 3147
    Shen Y L, Wu L, Qin D D, et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells: The role of mitochondria [J]. Particle and Fibre Toxicology, 2018, 15(1): 16
    Liu D D, Yi C Q, Zhang D W, et al. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes [J]. ACS Nano, 2010, 4(4): 2185-2195
    Yang D H, Li T, Xu M H, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons [J]. Nanomedicine, 2014, 9(16): 2445-2455
    Krukiewicz K, Putzer D, Stuendl N, et al. Enhanced osteogenic differentiation of human primary mesenchymal stem and progenitor cultures on graphene oxide/poly(methyl methacrylate) composite scaffolds [J]. Materials, 2020, 13(13): 2991
    Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 115: 111102
    Sohaebuddin S K, Thevenot P T, Baker D, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent [J]. Particle and Fibre Toxicology, 2010, 7: 22
    Dong X M, Wu Z H, Li X P, et al. The size-dependent cytotoxicity of amorphous silica nanoparticles: A systematic review of in vitro studies [J]. International Journal of Nanomedicine, 2020, 15: 9089-9113
    Sun H N, Jiang C J, Wu L, et al. Cytotoxicity-related bioeffects induced by nanoparticles: The role of surface chemistry [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 414
    Woz'niak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications [J]. Journal of Materials Science Materials in Medicine, 2017, 28(6): 92
    Pacheco-Blandino I, Vanner R, Buzea C. Toxicity of Nanoparticles [M]//Pacheco-Torgal F, Jalali S, Fucic A. Toxicity of Building Materials. Woodhead Publishing. 2012: 427-475
    Krpetić Z, Anguissola S, Garry D, et al. Nanomaterials: Impact on cells and cell organelles [J]. Advances in Experimental Medicine and Biology, 2014, 811: 135-156
    Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials [J]. Reports of Practical Oncology and Radiotherapy, 2018, 23(4): 300-308
    Wei Z C, Chen L M, Thompson D M, et al. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles [J]. Journal of Experimental Nanoscience, 2014, 9(6): 625-638
    Jeon S, Clavadetscher J, Lee D K, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles [J]. Nanomaterials, 2018, 8(12): 1028
    Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles [J]. International Journal of Nanomedicine, 2012, 7: 5577-5591
    Lorenz S, Hauser C P, Autenrieth B, et al. The softer and more hydrophobic the better: Influence of the side chain of polymethacrylate nanoparticles for cellular uptake [J]. Macromolecular Bioscience, 2010, 10(9): 1034-1042
    Serpooshan V, Sheibani S, Pushparaj P, et al. Effect of cell sex on uptake of nanoparticles: The overlooked factor at the nanobiointerface [J]. ACS Nano, 2018, 12(3): 2253-2266
    Zhang J, Chen Y J, Gao M, et al. Silver nanoparticles compromise female embryonic stem cell differentiation through disturbing X chromosome inactivation [J]. ACS Nano, 2019, 13(2): 2050-2061
    Huang Y R, Wu I T, Chen C C, et al. In vitro comparisons of microscale and nanoscale calcium silicate particles [J]. Journal of Materials Chemistry B, 2020, 8(28): 6034-6047
    Jawad H, Boccaccini A R, Ali N N, et al. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications [J]. Nanotoxicology, 2011, 5(3): 372-380
    Encabo-Berzosa M D M, Sancho-Albero M, Crespo A, et al. The effect of PEGylated hollow gold nanoparticles on stem cell migration: Potential application in tissue regeneration [J]. Nanoscale, 2017, 9(28): 9848-9858
    Borm P J, Robbins D, Haubold S, et al. The potential risks of nanomaterials: A review carried out for ECETOC [J]. Particle and Fibre Toxicology, 2006, 3: 11
    杨仁君, 任悦, 沈素, 等. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55

    Yang R J, Ren Y, Shen S, et al. Application and prospect of human pluripotent stem cells in risk assessment of environmental pollutants [J]. Asian Journal of Ecotoxicology, 2020, 15(3): 47-55 (in Chinese)

    Jia X L, Wang T, Zhu H. Advancing computational toxicology by interpretable machine learning [J]. Environmental Science & Technology, 2023, 57(46): 17690-17706
    Kar S, Pathakoti K, Tchounwou P B, et al. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through in vitro and in silico studies [J]. Chemosphere, 2021, 264(Pt 1): 128428
    Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture [J]. Physiology, 2017, 32(4): 266-277
    Lancaster M A, Knoblich J A. Organogenesis in a dish: Modeling development and disease using organoid technologies [J]. Science, 2014, 345(6194): 1247125
    Prasad M, Kumar R, Buragohain L, et al. Organoid technology: A reliable developmental biology tool for organ-specific nanotoxicity evaluation [J]. Frontiers in Cell and Developmental Biology, 2021, 9: 696668
    Mun S J, Ryu J S, Lee M O, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids [J]. Journal of Hepatology, 2019, 71(5): 970-985
    Lancaster M A, Huch M. Disease modelling in human organoids [J]. Disease Models & Mechanisms, 2019, 12(7): dmm039347
    Oh J H, Son M Y, Choi M S, et al. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles [J]. Toxicology and Applied Pharmacology, 2016, 299: 8-23
    Rajanahalli P, Stucke C J, Hong Y L. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation [J]. Toxicology Reports, 2015, 2: 758-764
    Sengstock C, Diendorf J, Epple M, et al. Effect of silver nanoparticles on human mesenchymal stem cell differentiation [J]. Beilstein Journal of Nanotechnology, 2014, 5: 2058-2069
    Hackenberg S, Scherzed A, Technau A, et al. Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro [J]. Journal of Biomedical Nanotechnology, 2013, 9(1): 86-95
    Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, et al. Cytotoxicity evaluation of ammonia-modified graphene oxide particles in lung cancer cells and embryonic stem cells [J]. Advances in Condensed Matter Physics, 2018, 2018: 9571828
  • 加载中
计量
  • 文章访问数:  438
  • HTML全文浏览数:  438
  • PDF下载数:  156
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-04-04
木拉提·居来提, 崔婷婷, 那迪热·尼加提, 胡博文. 干细胞在纳米颗粒物毒性机制研究中的应用[J]. 生态毒理学报, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
引用本文: 木拉提·居来提, 崔婷婷, 那迪热·尼加提, 胡博文. 干细胞在纳米颗粒物毒性机制研究中的应用[J]. 生态毒理学报, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
Mulati Julaiti, Cui Tintin, Nadire Nijiati, Hu Bowen. Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001
Citation: Mulati Julaiti, Cui Tintin, Nadire Nijiati, Hu Bowen. Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 27-42. doi: 10.7524/AJE.1673-5897.20240404001

干细胞在纳米颗粒物毒性机制研究中的应用

    通讯作者: 胡博文(1993-),男,博士,副教授,硕士生导师,主要研究方向为干细胞毒理学。E-mail:bowenhu_tc@163.com
    作者简介: 木拉提·居来提(2000-),男,硕士研究生,研究方向为干细胞毒理学,E-mail:mulatijulaiti@163.com
  • 新疆医科大学基础医学院生物化学与分子生物学系, 中亚高发病发病机制与防治国家重点实验室, 新疆地方病分子生物学重点实验室, 乌鲁木齐 830017
基金项目:

新疆维吾尔自治区杰出青年项目基金(2022D01E52);国家自然科学基金青年项目(22206162);新疆维吾尔自治区天山创新团队计划(2022D1400)

摘要: 纳米颗粒物因其优异的性能在各个领域中都得到了广泛的应用。然而,这些纳米颗粒物的潜在健康风险,尤其是对胎儿发育的影响也受到越来越广泛的关注。干细胞的多向分化的特点使其逐渐成为了评估纳米颗粒物的安全性和发育毒性的有力工具。本综述深入分析了干细胞在金属和非金属纳米粒子的发育毒性研究中的现状。深入探讨了具有不同特性(如尺寸、形状、表面电荷等)的纳米颗粒物对干细胞的影响,以及由此产生的毒性效应的差异。最后强调了干细胞来源的类器官在纳米毒理学的研究中的潜力,为毒理学研究提供了更加准确的毒性评价模型。

English Abstract

参考文献 (102)

返回顶部

目录

/

返回文章
返回