干细胞在纳米颗粒物毒性机制研究中的应用
Application of Stem Cells in Investigation of Nanoparticles Toxicity Mechanisms
-
摘要: 纳米颗粒物因其优异的性能在各个领域中都得到了广泛的应用。然而,这些纳米颗粒物的潜在健康风险,尤其是对胎儿发育的影响也受到越来越广泛的关注。干细胞的多向分化的特点使其逐渐成为了评估纳米颗粒物的安全性和发育毒性的有力工具。本综述深入分析了干细胞在金属和非金属纳米粒子的发育毒性研究中的现状。深入探讨了具有不同特性(如尺寸、形状、表面电荷等)的纳米颗粒物对干细胞的影响,以及由此产生的毒性效应的差异。最后强调了干细胞来源的类器官在纳米毒理学的研究中的潜力,为毒理学研究提供了更加准确的毒性评价模型。Abstract: Nanoparticles, because of their unique physical and chemical properties, have been widely utilized in numerous fields. However, growing concerns are being raised regarding their potential health risks, particularly the impact on fetal development. Stem cells, with their capacity for self-renewal and differentiation, are emerging as valuable tools for assessing the safety and developmental toxicity of nanoparticles. This review examines the role of stem cells in evaluating the developmental toxicity of both metallic and non-metallic nanoparticles. It explores how nanoparticle characteristics, including size, shape, and surface charge, influence stem cell behavior and contribute to variations in toxicological outcomes. The review also underscores the promising role of stem cell-derived organoids in advancing nano toxicology, providing a more accurate and predictive model for toxicological studies.
-
Key words:
- nanoparticles /
- stem cell /
- organoids
-
Chen N, Wang H, Huang Q, et al. Long-term effects of nanoparticles on nutrition and metabolism [J]. Small, 2014, 10(18): 3603-3611 Kerativitayanan P, Carrow J K, Gaharwar A K. Nanomaterials for engineering stem cell responses [J]. Advanced Healthcare Materials, 2015, 4(11): 1600-1627 Schaeublin N M, Braydich-Stolle L K, Schrand A M, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity [J]. Nanoscale, 2011, 3(2): 410-420 Wang W Q, Gaus K, Tilley R D, et al. The impact of nanoparticle shape on cellular internalisation and transport: What do the different analysis methods tell us? [J]. Materials Horizons, 2019, 6(8): 1538-1547 Faiola F, Yin N Y, Yao X L, et al. The rise of stem cell toxicology [J]. Environmental Science & Technology, 2015, 49(10): 5847-5848 Hu B W, Cheng Z W, Liang S X. Advantages and prospects of stem cells in nanotoxicology [J]. Chemosphere, 2022, 291(Pt 2): 132861 Alshatwi A A, Subbarayan P V, Ramesh E, et al. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells [J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(1): 1-10 Nogueira D R, Rolim C M, Farooqi A A. Nanoparticle induced oxidative stress in cancer cells: Adding new pieces to an incomplete jigsaw puzzle [J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(12): 4739-4743 Shin T H, Seo C, Lee D Y, et al. Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species [J]. Archives of Toxicology, 2019, 93(5): 1201-1212 Zhao H, Chen L, Zhong G S, et al. Titanium dioxide nanoparticles induce mitochondrial dynamic imbalance and damage in HT22 cells [J]. Journal of Nanomaterials, 2019, 2019: 4607531 Paciorek P, Z·uberek M, Grzelak A. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles [J]. Materials, 2020, 13(11): 2460 de Oliveira Mallia J, Galea R, Nag R, et al. Nanoparticle food applications and their toxicity: Current trends and needs in risk assessment strategies [J]. Journal of Food Protection, 2022, 85(2): 355-372 Jia J B, Li F F, Zhou H Y, et al. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice [J]. Environmental Science & Technology, 2017, 51(16): 9334-9343 Peng H, Zhang X H, Wei Y, et al. Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line [J]. Journal of Nanomaterials, 2012, 2012: 160145 Yin N Y, Hu B W, Yang R J, et al. Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro [J]. Journal of Interdisciplinary Nanomedicine, 2018, 3(3): 133-145 Huang Y, Guo L L, Cao C L, et al. Silver nanoparticles exposure induces developmental neurotoxicity in hiPSC-derived cerebral organoids [J]. The Science of the Total Environment, 2022, 845: 157047 Hu B W, Yin N Y, Yang R J, et al. Silver nanoparticles (AgNPs) and AgNO3 perturb the specification of human hepatocyte-like cells and cardiomyocytes [J]. The Science of the Total Environment, 2020, 725: 138433 Guo J F, Rahme K, He Y, et al. Gold nanoparticles enlighten the future of cancer theranostics [J]. International Journal of Nanomedicine, 2017, 12: 6131-6152 Kumar D, Mutreja I, Chitcholtan K, et al. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells [J]. Nanotechnology, 2017, 28(47): 475101 Söderstjerna E, Johansson F, Klefbohm B, et al. Gold- and silver nanoparticles affect the growth characteristics of human embryonic neural precursor cells [J]. PLoS One, 2013, 8(3): e58211 Nabi S U, Ali S I, Rather M A, et al. Organoids: A new approach in toxicity testing of nanotherapeutics [J]. Journal of Applied Toxicology, 2022, 42(1): 52-72 Lee J, Lilly G D, Doty R C, et al. In vitro toxicity testing of nanoparticles in 3D cell culture [J]. Small, 2009, 5(10): 1213-1221 Peng H S, Wang C, Xu X Y, et al. An intestinal Trojan horse for gene delivery [J]. Nanoscale, 2015, 7(10): 4354-4360 Senut M C, Zhang Y H, Liu F C, et al. Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives [J]. Small, 2016, 12(5): 631-646 Xia Z H, Li J Y, Zhang J M, et al. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids [J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95 Yi C X, Yu Z H, Ren Q, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy [J]. Photodiagnosis and Photodynamic Therapy, 2020, 30: 101694 Gharpure S, Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996 Ahamed M, Akhtar M J, Majeed Khan M A M, et al. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2) [J]. Colloids and Surfaces B, Biointerfaces, 2016, 148: 665-673 Chen Z Y, Yang Y C, Wang B J, et al. Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae [J]. Ecotoxicology and Environmental Safety, 2022, 243: 113967 Subramanian R, Sabeena G K, Ponnanikajamideen M, et al. Synthesis of green zinc oxide nanoparticles mediated by Syzygium cumini induced developmental deformation in embryo toxicity of (Danio rerio) zebrafish [J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2022, 41(12): 3971-3980 Ickrath P, Wagner M, Scherzad A, et al. Time-dependent toxic and genotoxic effects of zinc oxide nanoparticles after long-term and repetitive exposure to human mesenchymal stem cells [J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1590 Orazizadeh M, Khodadadi A, Bayati V, et al. In vitro toxic effects of zinc oxide nanoparticles on rat adipose tissue-derived mesenchymal stem cells [J]. Cell Journal, 2015, 17(3): 412-421 Liu L L, Wang J K, Zhang J Q, et al. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy [J]. Cell Biology and Toxicology, 2023, 39(1): 259-275 Li Y, Yan J, Ding W, et al. Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles [J]. Mutagenesis, 2017, 32(1): 33-46 Iavicoli I, Leso V, Fontana L, et al. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies [J]. European Review for Medical and Pharmacological Sciences, 2011, 15(5): 481-508 Cichoz·-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases [J]. World Journal of Gastroenterology, 2014, 20(25): 8082-8091 Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, et al. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles [J]. Journal of Materials Science Materials in Medicine, 2022, 33(5): 41 Cao X Q, Han Y H, Gu M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations [J]. Small, 2020, 16(36): e2001858 Zhang L P, He Y L, Dong L L, et al. Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles [J]. Cell Proliferation, 2023, 56(8): e13427 Oh S, Brammer K S, Li Y S, et al. Stem cell fate dictated solely by altered nanotube dimension [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130-2135 Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Letters, 2007, 7(6): 1686-1691 Tong Z C, Liu Y C, Xia R Z, et al. F-actin regulates osteoblastic differentiation of mesenchymal stem cells on TiO2 nanotubes through MKL1 and YAP/TAZ [J]. Nanoscale Research Letters, 2020, 15(1): 183 Park J, Bauer S, Schlegel K A, et al. TiO2 nanotube surfaces: 15 nm—An optimal length scale of surface topography for cell adhesion and differentiation [J]. Small, 2009, 5(6): 666-671 Pan L, Lee Y M, Lim T K, et al. Quantitative proteomics study reveals changes in the molecular landscape of human embryonic stem cells with impaired stem cell differentiation upon exposure to titanium dioxide nanoparticles [J]. Small, 2018, 14(23): e1800190 Krug H F, Wick P. Nanotoxicology: An interdisciplinary challenge [J]. Angewandte Chemie, 2011, 50(6): 1260-1278 Mashayekhi S, Rasoulpoor S, Shabani S, et al. Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells [J]. International Journal of Pharmaceutics, 2020, 587: 119656 Li X Y, Li Y, Lv S Q, et al. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model [J]. Chemosphere, 2022, 300: 134633 Zhu Y, Zhang Y K, Li Y B, et al. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes [J]. Journal of Hazardous Materials, 2022, 434: 128820 Mahmoud A M, Desouky E M, Hozayen W G, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats [J]. Biomolecules, 2019, 9(10): 528 Yang X, Liu X J, Li Y Y, et al. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 81: 341-348 Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice [J]. Nature Nanotechnology, 2011, 6(5): 321-328 Vranic S, Shimada Y, Ichihara S, et al. Toxicological evaluation of SiO2 nanoparticles by zebrafish embryo toxicity test [J]. International Journal of Molecular Sciences, 2019, 20(4): 882 Periasamy V S, Athinarayanan J, Akbarsha M A, et al. Silica nanoparticles induced metabolic stress through EGR1, CCND, and E2F1 genes in human mesenchymal stem cells [J]. Applied Biochemistry and Biotechnology, 2015, 175(2): 1181-1192 Mousavi M, Hakimian S, Mustafa T A, et al. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: Biophysical, theoretical and cellular studies [J]. International Journal of Nanomedicine, 2019, 14: 5355-5368 Park S B, Jung W H, Kim K Y, et al. Toxicity assessment of SiO2 and TiO2 in normal colon cells, in vivo and in human colon organoids [J]. Molecules, 2020, 25(16): 3594 Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents: A minireview [J]. Nanoscale Horizons, 2019, 4(1): 117-137 Chen H Q, Zhao R F, Wang B, et al. Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: Association with the changes in gut microbiota in mice [J]. Advanced Healthcare Materials, 2018, 7(13): e1701313 Song G D, Guo X S, Zong X L, et al. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats [J]. Dental Materials Journal, 2019, 38(1): 127-135 Palmer B C, Phelan-Dickenson S J, DeLouise L A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation [J]. Particle and Fibre Toxicology, 2019, 16(1): 3 Kim J E, Cho M H. Effects of multiwall carbon nanotubes on premature kidney aging: Biochemical and histological analysis [J]. Toxics, 2023, 11(4): 373 Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development [J]. ACS Nano, 2011, 5(6): 4624-4633 Ema M, Hougaard K S, Kishimoto A, et al. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review [J]. Nanotoxicology, 2016, 10(4): 391-412 Jiang Y, Gong H S, Jiang S H, et al. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids [J]. The Science of the Total Environment, 2020, 748: 141384 Mia M B, Saxena R K. Toxicity of poly-dispersed single-walled carbon nanotubes on bone marrow derived hematopoietic stem and progenitor cells [J]. Current Research in Toxicology, 2021, 2: 82-92 Periasamy V S, Athinarayanan J, Alfawaz M A, et al. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes [J]. Chemosphere, 2016, 144: 275-284 Feng Z Q, Yan K, Shi C M, et al. Neurogenic differentiation of adipose derived stem cells on graphene-based mat [J]. Materials Science & Engineering C, Materials for Biological Applications, 2018, 90: 685-692 Yang L T, Chueng S D, Li Y, et al. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy [J]. Nature Communications, 2018, 9(1): 3147 Shen Y L, Wu L, Qin D D, et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells: The role of mitochondria [J]. Particle and Fibre Toxicology, 2018, 15(1): 16 Liu D D, Yi C Q, Zhang D W, et al. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes [J]. ACS Nano, 2010, 4(4): 2185-2195 Yang D H, Li T, Xu M H, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons [J]. Nanomedicine, 2014, 9(16): 2445-2455 Krukiewicz K, Putzer D, Stuendl N, et al. Enhanced osteogenic differentiation of human primary mesenchymal stem and progenitor cultures on graphene oxide/poly(methyl methacrylate) composite scaffolds [J]. Materials, 2020, 13(13): 2991 Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 115: 111102 Sohaebuddin S K, Thevenot P T, Baker D, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent [J]. Particle and Fibre Toxicology, 2010, 7: 22 Dong X M, Wu Z H, Li X P, et al. The size-dependent cytotoxicity of amorphous silica nanoparticles: A systematic review of in vitro studies [J]. International Journal of Nanomedicine, 2020, 15: 9089-9113 Sun H N, Jiang C J, Wu L, et al. Cytotoxicity-related bioeffects induced by nanoparticles: The role of surface chemistry [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 414 Woz'niak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications [J]. Journal of Materials Science Materials in Medicine, 2017, 28(6): 92 Pacheco-Blandino I, Vanner R, Buzea C. Toxicity of Nanoparticles [M]//Pacheco-Torgal F, Jalali S, Fucic A. Toxicity of Building Materials. Woodhead Publishing. 2012: 427-475 Krpetić Z, Anguissola S, Garry D, et al. Nanomaterials: Impact on cells and cell organelles [J]. Advances in Experimental Medicine and Biology, 2014, 811: 135-156 Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials [J]. Reports of Practical Oncology and Radiotherapy, 2018, 23(4): 300-308 Wei Z C, Chen L M, Thompson D M, et al. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles [J]. Journal of Experimental Nanoscience, 2014, 9(6): 625-638 Jeon S, Clavadetscher J, Lee D K, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles [J]. Nanomaterials, 2018, 8(12): 1028 Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles [J]. International Journal of Nanomedicine, 2012, 7: 5577-5591 Lorenz S, Hauser C P, Autenrieth B, et al. The softer and more hydrophobic the better: Influence of the side chain of polymethacrylate nanoparticles for cellular uptake [J]. Macromolecular Bioscience, 2010, 10(9): 1034-1042 Serpooshan V, Sheibani S, Pushparaj P, et al. Effect of cell sex on uptake of nanoparticles: The overlooked factor at the nanobiointerface [J]. ACS Nano, 2018, 12(3): 2253-2266 Zhang J, Chen Y J, Gao M, et al. Silver nanoparticles compromise female embryonic stem cell differentiation through disturbing X chromosome inactivation [J]. ACS Nano, 2019, 13(2): 2050-2061 Huang Y R, Wu I T, Chen C C, et al. In vitro comparisons of microscale and nanoscale calcium silicate particles [J]. Journal of Materials Chemistry B, 2020, 8(28): 6034-6047 Jawad H, Boccaccini A R, Ali N N, et al. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications [J]. Nanotoxicology, 2011, 5(3): 372-380 Encabo-Berzosa M D M, Sancho-Albero M, Crespo A, et al. The effect of PEGylated hollow gold nanoparticles on stem cell migration: Potential application in tissue regeneration [J]. Nanoscale, 2017, 9(28): 9848-9858 Borm P J, Robbins D, Haubold S, et al. The potential risks of nanomaterials: A review carried out for ECETOC [J]. Particle and Fibre Toxicology, 2006, 3: 11 杨仁君, 任悦, 沈素, 等. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55 Yang R J, Ren Y, Shen S, et al. Application and prospect of human pluripotent stem cells in risk assessment of environmental pollutants [J]. Asian Journal of Ecotoxicology, 2020, 15(3): 47-55 (in Chinese)
Jia X L, Wang T, Zhu H. Advancing computational toxicology by interpretable machine learning [J]. Environmental Science & Technology, 2023, 57(46): 17690-17706 Kar S, Pathakoti K, Tchounwou P B, et al. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through in vitro and in silico studies [J]. Chemosphere, 2021, 264(Pt 1): 128428 Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture [J]. Physiology, 2017, 32(4): 266-277 Lancaster M A, Knoblich J A. Organogenesis in a dish: Modeling development and disease using organoid technologies [J]. Science, 2014, 345(6194): 1247125 Prasad M, Kumar R, Buragohain L, et al. Organoid technology: A reliable developmental biology tool for organ-specific nanotoxicity evaluation [J]. Frontiers in Cell and Developmental Biology, 2021, 9: 696668 Mun S J, Ryu J S, Lee M O, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids [J]. Journal of Hepatology, 2019, 71(5): 970-985 Lancaster M A, Huch M. Disease modelling in human organoids [J]. Disease Models & Mechanisms, 2019, 12(7): dmm039347 Oh J H, Son M Y, Choi M S, et al. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles [J]. Toxicology and Applied Pharmacology, 2016, 299: 8-23 Rajanahalli P, Stucke C J, Hong Y L. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation [J]. Toxicology Reports, 2015, 2: 758-764 Sengstock C, Diendorf J, Epple M, et al. Effect of silver nanoparticles on human mesenchymal stem cell differentiation [J]. Beilstein Journal of Nanotechnology, 2014, 5: 2058-2069 Hackenberg S, Scherzed A, Technau A, et al. Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro [J]. Journal of Biomedical Nanotechnology, 2013, 9(1): 86-95 Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, et al. Cytotoxicity evaluation of ammonia-modified graphene oxide particles in lung cancer cells and embryonic stem cells [J]. Advances in Condensed Matter Physics, 2018, 2018: 9571828
计量
- 文章访问数: 438
- HTML全文浏览数: 438
- PDF下载数: 156
- 施引文献: 0