-
空气臭氧(O3)污染已经成为我国许多地方的首要污染物,其对人体健康、粮食安全和生态安全的威胁正在引起社会高度关注。由于O3是一种活性强、氧化性高和寿命短的空气污染物,具有很大时间波动和空间变异。监测数据不足是影响深入了解O3污染物浓度特征、变化规律和传播途径,评价O3污染对气候、生态和人体健康等影响的重要瓶颈之一。空气O3监测方法包括主动(采样)监测方法和被动监测方法。主动监测是采用动力装置抽取一定体积的空气,通过化学液体吸收,分析其吸收液浓度(即化学吸收法)或通过测定其对紫外线的吸收量和光电信号转换,记录电信号(紫外光度法),得到空气中的O3浓度值。目前国家和地方空气质量监测站采用多为O3紫外光分析仪,其使用方便,并且能够实现在线实时监测,但也存在仪器价格昂贵、体积大,需要稳定的供电和良好的防雨保温等基础的外围辅助设施,必须要对监测仪器定时开展标定、校准、维护。进行大范围尺度长时间的监测,特别在偏远地区,采用主动监测方法存在很大困难。采用低成本、高可靠性的O3被动监测方法,对开展大范围、大空间分辨率和偏远地区的O3监测及其生态危害研究具有重大意义。
O3被动监测法是基于分子扩散和渗透原理,将空气中O3吸收或吸附到收集媒介,然后分析收集介质上化学物质量,计算出空气O3浓度值。该方法具有体积小、质量轻、占地空间小、不需要外接电源和进气管路、监测浓度范围大、操作简单、不需要特别的技术人员和标定维护且价格便宜,就能够方便地应用于大空间区域范围、长时间和高密度的污染监测。早在1853年,国外学者就采用被动监测方法监测空气O3浓度[1]。经过100多年的发展,O3被动监测方法的到广泛使用。例如,世界气象组织开展的全球50个站点O3观测[2],欧洲科学家开展的O3观测,美国加州对不同下垫面O3观测[3]及加拿大不同尺度的森林O3暴露水平的研究[4]。我国科学家从上一世纪90年代也纷纷研制和推广O3被动监测。20世纪90年代初有文献报道了分别对市内10种常见气体污染物进行监测的被动采样器[5-7];陈乐括等[8]利用自己研制的被动采样器进行了对高纬度地区和北京地区的SO2、NO2和NH3进行了监测[9];近年来,一些国内科研工作者利用被动采样器方法对北京及其周边地区的SO2、NO2、O3和NH3等主要污染物进进行了监测研究[10]。赵阳等采用采用被动扩散采样技术在珠江三角洲 200 km×200 km网格区域内测量了空气SO2、NO2和O3浓度水平[11]。
尽管O3被动监测方法具有很多优势,但其观测精度和可靠性较多受到质疑。因为在被动监测过程中,没有严格控制气体流量,并需要较长的采样时间。可能有许多因素会影响收集介质对O3的吸收,如空气实际O3浓度和空气温湿度、风速等气象因素[12]。以前也有一些有关O3被动监测方法精度和可靠性的研究,但大部分是在实验室条件下或野外条件下的短期研究。本研究在北京城市生态站的3个空气质量长期监测点,于2012—2017年同时采用O3被动采样分析监测法和O3分析仪在线主动监测法,开展了空气O3浓度观测,拟回答以下问题:(1)O3被动监测法和主动监测法观测到的O3平均浓度是否具有很好的线性相关性?并且这些相关性是否会受到监测地点和气象条件的影响?(2)O3被动监测法观测到的平均O3浓度能否很好地分辨出不同观测点的O3浓度差异,为作为开展大范围高空间分辨率的区域O3浓度监测的可靠监测方法。
大气臭氧被动监测方法适用性及影响因子相关性分析
Applicability of passive monitoring methods for atmospheric ozone and its influencing factors
-
摘要: 尽管臭氧(O3)被动监测方法在国内外已经有较长的开发和应用历史,但对其长期使用效果还存在一些疑问。于2012—2017年在北京城市生态系统研究站的3个空气质量监测点,对O3被动采样分析监测方法和O3分析仪在线主动监测方法进行了对比研究,得到了以下结论。被动监测和在线主动监测方法得到的O3平均浓度具有很高的线性相关性(r2> 0.95),其回归方程斜率不同监测地点与总体间不存在显著差异性,并且受气象条件的影响也不显著;被动监测方法估算O3浓度的关键参数—有效采样速率,在3个监测点间不存在显著差异;采用本地化采样速率计算的空气O3浓度平均值,与主动监测结果的最大差别小于10.1%。被动监测方法得到的3个监测点之间的差异规律与主动监测方法得到的高度一致,很好反映了O3浓度的空间变异。因此,在根据主动监测方法观测到的O3浓度对被动采样方法获取的臭氧浓度进行准确修正后,被动监测方法可以非常好地应用于区域大气O3污染多点网格化的监测中,为掌握大范围O3浓度空间变化和空间扩散规律,开展O3污染生态危害研究提供一种经济可靠的研究方法。Abstract: Although ozone (O3) passive monitoring method has a long history of development and application at home and abroad, its effectiveness for long-term use is still in question sometimes. In three air quality monitoring sites in Beijing Urban Ecosystem Research Station from 2012 to 2017, this study compared the O3 passive sampling analysis method and the active monitoring method (O3 analyzer online), the results are as follows: (1) There was a high linear correlation (r2 > 0.95) between the average concentrations of O3 obtained by passive monitoring and active monitoring, no significant difference in the slopes of the correlationship between the three sites and the whole population, and not significantly influenced by meteorological conditions. (2) Effective sampling rate --a key parameter for estimating O3 concentration for passive monitoring method, there was no significant difference among the three monitoring sites; The maximum difference between the average O3 concentration calculated by local sampling rate and from the active monitoring is less than 10.1%. (3) The spatial variation of O3 concentration among the three monitoring sites was identical for both the passive monitoring method and the active monitoring method. Therefore, corrected according to the ozone concentration observed by the active monitoring method, the passive monitoring method can be well applied to the multi-point grid monitoring of regional atmospheric O3 pollution; Passive monitoring method provides an economic and reliable research method for the study of ecological hazards of O3 pollution.
-
Key words:
- ozone /
- passive sampling method /
- effective sampling rate /
- spatial difference of ozone
-
表 1 O3主动监测、被动监测同步观测时段
Table 1. O3 Synchronous observation period of active monitoring and passive monitoring
年份
Year时间段(开始月日— 结束月日)
Times(start—end)被动采样次数
Passive sampling times2012* 0704—1206(1011—1206) 11(2) 2013 0614—1120 4 2014 0414—1030 6 2015 0413—1116 6 2017 0517—1128 7 注:*2012年括号外和内分别为教学植物园和生态中心被动监测时间段和次数.
Annotation: *In 2012, the periods and times of passive monitoring are shown in the Arboretum and Center, respectively. -
[1] NAMIESNIK J, ZABIEGAŁA B, KOT-WASIK A, et al. Passive sampling and/or extraction techniques in environmental analysis: A review [J]. Analytical and Bioanalytical Chemistry, 2005, 381(2): 279-301. doi: 10.1007/s00216-004-2830-8 [2] CARMICHAEL G R, FERM M, THONGBOONCHOO N, et al. Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers [J]. Atmospheric Environment, 2003, 37(9): 1293-1308. [3] GROSJEAN D, WILLIAMS E L . GROSJEAN E. Monitoring ambient ozone with a network of passive samplers: A feasibility study [J]. Environmental Pollution, 1995, 88(3): 267-273. doi: 10.1016/0269-7491(95)93439-7 [4] COX R M. The use of passive sampling to monitor forest exposure to O3, NO2 and SO2: A review and some case studies [J]. Environmental Pollution, 2003, 126(3): 301-311. doi: 10.1016/S0269-7491(03)00243-4 [5] 崔九思. 扩散法被动式个体采样器的设计原理、试验装置和性能评价方法 [J]. 卫生研究, 1994, 23(Supplement 1): 1-12. CUI J S. Principle of structural design and evaluation of performance characteristics of passive personal samplers by molecular diffusion [J]. Journal of Hygiene Research, 1994, 23(Supplement 1): 1-12(in Chinese).
[6] 宋瑞金. 被动式二氧化氮个体采样器 [J]. 卫生研究, 1994, 23(Supplement 1): 118-121. SONG R J. New passive personal monitor for NO2 by molecular diffusion [J]. Journal of Hygiene Research, 1994, 23(Supplement 1): 118-121(in Chinese).
[7] 史黎薇. 被动式二氧化硫个体监测器 [J]. 卫生研究, 1994, 23(Supplement 1): 115-117. SHI L W. New passive personal monitor for SO2 by molecular diffusion [J]. Journal of Hygiene Research, 1994, 23(Supplement 1): 115-117(in Chinese).
[8] 陈乐恬, 佟玉芹, 宋文质, 等. 大气臭氧扩散采样方法的初步研究 [J]. 环境化学, 1999, 18(4): 333-337. CHEN L T, TONG Y Q, SONG W Z, et al. A preliminary study on the diffusion sampling of ozone in the air [J]. Environmental Chemistry, 1999, 18(4): 333-337(in Chinese).
[9] 陈乐恬, 佟玉芹, 方精云. 高纬度和北极地区空气中SO2、NO2和NH3浓度的观测 [J]. 环境科学学报, 1997, 17(2): 248-251. doi: 10.3321/j.issn:0253-2468.1997.02.021 CHEN L T, TONG Y Q, FANG J Y. A survey of SO2, NO2 and NH3 concentrations in atmosphere at high latitudes and arctic [J]. Acta Scientiae Circumstantiae, 1997, 17(2): 248-251(in Chinese). doi: 10.3321/j.issn:0253-2468.1997.02.021
[10] 吴丹, 王跃思, 潘月鹏, 等. 被动采样法观测研究京津冀区域大气中气态污染物 [J]. 环境科学, 2010, 31(12): 2844-2851. WU D, WANG Y S, PAN Y P, et al. Application of passive sampler to monitor and study atmospheric trace gases in Beijing-Tianjin-Hebei area [J]. Environmental Science, 2010, 31(12): 2844-2851(in Chinese).
[11] 赵阳, 邵敏, 王琛, 等. 被动采样监测珠江三角洲NOx、SO2和O3的空间分布特征 [J]. 环境科学, 2011, 32(2): 324-329. ZHAO Y, SHAO M, WANG C, et al. Characterizing spatial patterns of NOx, SO2 and O3 in Pearl River Delta by passive sampling [J]. Environmental Science, 2011, 32(2): 324-329(in Chinese).
[12] KRUPA S V, LEGGE A H. Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective [J]. Environmental Pollution, 2000, 107(1): 31-45. doi: 10.1016/S0269-7491(99)00154-2 [13] 张红星, 孙旭, 姚余辉, 等. 北京夏季地表臭氧污染分布特征及其对植物的伤害效应 [J]. 生态学报, 2014, 34(16): 4756-4765. ZHANG H X, SUN X, YAO Y H, et al. Ground-level ozone distribution pattern in summer of Beijing and its foliar injury effect upon plants [J]. Acta Ecologica Sinica, 2014, 34(16): 4756-4765(in Chinese).
[14] GROSJEAN D, WILLIAMS E L II. Field tests of a passive sampler for atmospheric ozone at california mountain forest locations [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(8): 1407-1411. doi: 10.1016/0960-1686(92)90125-5 [15] BRAUER M, BROOK J R. Personal and fixed-site ozone measurements with a passive sampler [J]. Journal of the Air and Waste Management Association, 1995, 45(7): 529-537. doi: 10.1080/10473289.1995.10467384 [16] ÖZDEN Ö, DÖĞEROĞLU T. Performance evaluation of a tailor-made passive sampler for monitoring of tropospheric ozone [J]. Environmental Science and Pollution Research, 2012, 19(8): 3200-3209. doi: 10.1007/s11356-012-0825-0 [17] KOUTRAKIS P, WOLFSON J M, BUNYAVIROCH A, et al. Measurement of ambient ozone using a nitrite-coated filter [J]. Analytical Chemistry, 1993, 65(3): 209-214. doi: 10.1021/ac00051a004 [18] BLUM O, BYTNEROWICZ A, MANNING W, et al. Ambient tropospheric ozone in the Ukrainian Carpathian mountains and Kiev region: Detection with passive samplers and bioindicator plants [J]. Environmental Pollution, 1997, 98(3): 299-304. doi: 10.1016/S0269-7491(97)00158-9 [19] MANNING W J, KRUPA S V, BERGWEILER C J, et al. Ambient ozone (O3) in three Class I wilderness areas in the northeastern USA: Measurements with Ogawa passive samplers [J]. Environmental Pollution, 1996, 91(3): 399-403. doi: 10.1016/0269-7491(95)00075-5 [20] LIU L J S, OLSON M P, ALLEN G A, et al. Evaluation of the Harvard ozone passive sampler on human subjects indoors [J]. Environmental Science and Technology, 1994, 28(5): 915-923. doi: 10.1021/es00054a024 [21] SANZ M J, CALATAYUD V, SÁNCHEZ-PEÑA G. Measures of ozone concentrations using passive sampling in forests of South Western Europe [J]. Environmental Pollution, 2007, 145(3): 620-628. doi: 10.1016/j.envpol.2006.02.031 [22] GEROSA G, FERRETTI M, BUSSOTTI F, et al. Estimates of ozone AOT40 from passive sampling in forest sites in South-Western Europe [J]. Environmental Pollution, 2007, 145(3): 629-635. doi: 10.1016/j.envpol.2006.02.030 [23] MARCO A, VITALE M, KILIC U, et al. New functions for estimating AOT40 from ozone passive sampling [J]. Atmospheric Environment, 2014, 95: 82-88. doi: 10.1016/j.atmosenv.2014.06.021 [24] CALATAYUD V, DIÉGUEZ J J, SICARD P, et al. Testing approaches for calculating stomatal ozone fluxes from passive samplers [J]. Science of the Total Environment, 2016, 572: 56-67. doi: 10.1016/j.scitotenv.2016.07.155