-
随着经济发展和城市化进程加快,大气污染已经成为我国主要的环境和社会问题之一并引起广泛关注[1-3]。大气颗粒物对能见度、辐射强迫、生态系统以及呼吸系统等具有重要影响[4-7],除了一次污染物排放,高浓度的二次气溶胶形成也是区域大气污染的重要贡献[2],和质量浓度相比,大气颗粒物对气候、环境和健康的影响更多地取决于物理化学特性,例如化学组成、粒径分布和混合性质等[8-9]。成都市污染源排放量大[10-11],地处青藏高原东部边缘,四川盆地西部,西侧为龙门-邛崃山脉,东邻龙泉山,形成复杂的山谷地形,常年静风,多逆温,空气滞留事件频发[12-13],相对湿度高,边界层高度低,污染物不易扩散且利于二次污染物的生成和转化[14]。清洁天、霾天和沙尘天化学组分特征及来源存在差异[15],已有研究多集中于成都市城区PM2.5的观测[15-18],深入分析大气颗粒物化学组分浓度、粒径分布有助于进一步阐明大气颗粒物的来源、形成规律和迁移转化特征[19]。本研究采样点位于成都市郊,针对成都市2017年冬季一次包括细颗粒物以及沙尘天气在内的持续性重污染过程,对大气颗粒物水溶性离子和碳质气溶胶质量浓度粒径谱及来源进行分析,为冬季大气重污染成因提供基础数据及理论支撑。
另外,城市边界层内污染物垂直变化特征复杂。Zhu等[20]研究结果表明,北京重污染过程传输阶段垂直方向上后向散射剖面呈双层模式,最大输送高度位于0.5—1.0 km之间。李浩文等[21]研究结果表明佛山重污染过程近地面细粒子污染较为严重,消光系数高值区域有明显分层。王跃等[22]对北京2013年2月污染天气过程分析认为边界层低层顺时针风切变与大气中细颗粒物的爆发性增长密切相关。徐栋夫等[23]利用持续垂直探测资料得出成都市消光系数演变与PM2.5浓度值变化对应一致,近地面混合层高度降低、残留层气溶胶向下混合,相对湿度增加均是导致地面污染加重的原因。然而,气溶胶垂直分布和边界层结构演变与化学组分的关系研究仍然较少,这些是影响区域大气污染有效控制的重要因素,本文综合激光雷达资料和气象条件分析成都市边界层内气溶胶以及风场垂直演变特征,以期为成都市大气颗粒物形成的化学和物理机制的深入研究提供基础资料。
成都市郊冬季一次大气重污染过程化学组分粒径分布特征
The particle size distribution of chemical components during a heavy air pollution period in suburban Chengdu in winter
-
摘要: 利用惯性撞击式8级采样器(Andersen)于2017年12月15日至2018年1月3日对成都大气颗粒物进行连续采样,结合气象观测资料和气溶胶激光雷达数据分析污染过程水溶性无机离子和碳质气溶胶粒径分布变化特征及气溶胶垂直分布演变。结果表明,二次气溶胶的形成和积累是此次污染过程发生发展的重要原因。NO3-和SO42-重污染阶段呈单峰型分布,峰值粒径出现在0.65—1.1 μm粒径段,表明主要由前提物的云内反应生成,沙尘阶段呈双峰型分布,主峰位于3.3—4.7 μm,NO3-主要以非均相反应存在于粗粒径段中,SO42-既有来自一次污染源(沙尘、土壤源等),也有来自二次氧化反应;高湿度下液相反应的加剧,NO3-、SO42-和NH4+细粒子峰由0.65—1.1 μm向1.1—2.1 μm粒径段转移。Ca2+、Mg2+和Na+主要集中在粗模态中,自然源对沙尘污染贡献显著;K+和Cl-沙尘阶段呈明显双峰型分布;OC和EC主要呈双模态分布,不同阶段峰值出现的粒径段有所改变。重污染阶段消光系数大值区主要位于1.0 km以下;边界层高度0.5 km左右且伴随有下沉气流,持续的偏东风或偏南风有利于大气增湿及污染物区域输送共同导致此次污染过程污染物持续升高。本研究可为成都市大气颗粒物形成的化学和物理机制的深入研究提供基础资料。Abstract: The atmospheric particles in Chengdu were continuously sampled from December 15th, 2017 to January 3rd, 2018 by using 8-stage sampler ( Andersen ). Meteorological observation data and aerosol lidar data were used to analyze the particle size distribution characteristics of water-soluble inorganic ions and carbonaceous aerosols and vertical distribution evolution of aerosol during the pollution process. The results showed that the formation and accumulation of secondary aerosols were important reasons for the occurrence and development of this pollution process. NO3- and SO42- were unimodal during the heavy pollution period, peaking at 0.65—1.1 μm, suggesting that they were mainly from in-cloud process. NO3- and SO42- showed a bimodal distribution during the dust period and the main peak was 3.3—4.7 μm., suggesting that NO3- was formed mainly heterogeneous reactions in the coarse particles and SO42- was from both primary pollution sources(dust, soil sources, etc) and secondary oxidation reactions. Owing to high humidity, the aqueous phase reactions of NO3−, SO42- and NH4+ were likely promoted, which led to the peak shifted from 0.65—1.1 μm to 1.1—2.1 μm. Ca2+, Mg2+ and Na+ were mainly concentrated in coarse particles, suggesting that natural sources contribute significantly to dust pollution. The size distribution of K+ and Cl- were bimodal obviously during the dust period. OC and EC were bimodal mainly, and range of peak values were different during the different periods. The large value area of extinction coefficient during the heavy pollution period was mainly below 1.0 km. The boundary layer height was about 0.5 km and accompanied by downdraft airflow, and the continuous easterly or southerly wind were conductive to atmospheric humidification and regional transport of pollutants, which jointly lead to the continuous increase of pollutants in the pollution process. The study can provide basic data for further study on the chemical and physical formation mechanism of atmospheric particulate matter in Chengdu.
-
图 3 成都2017年12月15日—2018年1月3日采样期间PM2.1和PM2.1-9中化学组分质量浓度
Figure 3. The mass concentration of chemical compositions of PM2.1 and PM9 from 15th December 2017 to 3rd January 2018 in Chengdu and the contribution of chemical compositions in coarse and fine particles in different periods(The inner ring represents fine particles and the outer ring represents coarse particles).
表 1 PM2.1和PM2.1-9中NOR、SOR及同期湿度、温度平均值
Table 1. Average valules of NOR and SOR in PM2.1 and PM2.1-9, relative humidity and temperature
PM2.1 PM2.1-9 相对湿度/%
Humidity温度/℃
TemperatureNOR SOR NOR SOR 清洁期 0.16 0.46 0.05 0.30 56.0 8.4 累积阶段 0.15 0.38 0.03 0.15 73.3 6.8 重污染阶段 0.28 0.65 0.07 0.33 80.1 7.0 沙尘阶段 0.10 0.51 0.11 0.57 63.0 7.9 -
[1] CHE H Z, XIA X, ZHU J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze—fog month over North China Plain in 2013 based on ground—based sunphotometer measurements [J]. Atmospheric Chemistry Physics, 2014, 14(4): 2125-2138. doi: 10.5194/acp-14-2125-2014 [2] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222. doi: 10.1038/nature13774 [3] ZHANG X Y, WANG Y Q, NIU T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 779-799. doi: 10.5194/acp-12-779-2012 [4] CHE H Z, ZHANG X Y, LI Y, et al. Horizontal visibility trends in China 1981–2005 [J]. Geophysical Research Letters, 2007, 34(24): L24706. doi: 10.1029/2007GL031450 [5] DUAN J C, TAN J H. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies [J]. Atmospheric Environment, 2013, 74: 93-101. doi: 10.1016/j.atmosenv.2013.03.031 [6] LI Q, ZHANG R H, WANG Y. Interannual variation of the wintertime fog-haze days across central and Eastern China and its relation with East Asian winter monsoon [J]. International Journal of Climatology, 2016, 36(1): 346-354. doi: 10.1002/joc.4350 [7] SUN Z Q, MU Y J, LIU Y J, et al. A comparison study on airborne particles during haze days and non-haze days in Beijing [J]. Science of the Total Environment, 2013, 456/457: 1-8. doi: 10.1016/j.scitotenv.2013.03.006 [8] HARMSEN M J H M, DORST P, VUUREN D P, et al. Co-benefits of black carbon mitigation for climate and air quality [J]. Climatic Change, 2020, 163(3): 1519-1538. doi: 10.1007/s10584-020-02800-8 [9] LIN W W, DAI J J, LIU R, et al. Integrated assessment of health risk and climate effects of black carbon in the Pearl River Delta region, China [J]. Environmental Research, 2019, 176: 108522. doi: 10.1016/j.envres.2019.06.003 [10] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1),doi:10.1029/2011gb004161. [11] ZHAO B, WANG S X, DONG X Y, et al. Environmental effects of the recent emission changes in China: Implications for particulate matter pollution and soil acidification [J]. Environmental Research Letters, 2013, 8(2): 024031. doi: 10.1088/1748-9326/8/2/024031 [12] LIAO T T, WANG S, AI J, et al. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China) [J]. Science of the Total Environment, 2017, 584/585: 1056-1065. doi: 10.1016/j.scitotenv.2017.01.160 [13] LIAO T T, GUI K, JIANG W T, et al. Air stagnation and its impact on air quality during winter in Sichuan and Chongqing, southwestern China [J]. Science of the Total Environment, 2018, 635: 576-585. doi: 10.1016/j.scitotenv.2018.04.122 [14] WANG L L, ZHANG N, LIU Z R, et al. The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei region during January 2013 [J]. Advances in Meteorology, 2014, 2014: 1-14. [15] HUANG X J, ZHANG J K, LUO B, et al. Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas [J]. Environmental Pollution, 2018, 243: 1740-1749. doi: 10.1016/j.envpol.2018.09.126 [16] TAO J, GAO J, ZHANG L, et al. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8679-8699. doi: 10.5194/acp-14-8679-2014 [17] TIAN M, WANG H B, CHEN Y, et al. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China [J]. Science of the Total Environment, 2017, 580: 224-234. doi: 10.1016/j.scitotenv.2016.12.048 [18] WANG H B, TIAN M, CHEN Y, et al. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 865-881. doi: 10.5194/acp-18-865-2018 [19] 陶月乐, 李亲凯, 张俊, 等. 成都市大气颗粒物粒径分布及水溶性离子组成的季节变化特征 [J]. 环境科学, 2017, 38(10): 4034-4043. doi: 10.13227/j.hjkx.201702175 TAO Y L, LI Q K, ZHANG J, et al. Seasonal variations in particle size distribution and water-soluble ion composition of atmospheric particles in Chengdu [J]. Environmental Science, 2017, 38(10): 4034-4043(in Chinese). doi: 10.13227/j.hjkx.201702175
[20] ZHU X W, TANG G Q, HU B, et al. Regional pollution and its formation mechanism over North China Plain: A case study with ceilometer observations and model simulations [J]. Journal of Geophysical Research:Atmospheres, 2016, 121(24): 14574-14588. doi: 10.1002/2016JD025730 [21] 李浩文, 张阿思, 步巧利, 等. 2015年干季佛山一次重空气污染过程形成机理研究 [J]. 环境科学学报, 2017, 37(8): 3044-3053. doi: 10.13671/j.hjkxxb.2017.0069 LI H W, ZHANG A, BU Q L, et al. Investigation of the formation mechanism of a heavy air pollution episode in the dry season of 2015 in Foshan [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 3044-3053(in Chinese). doi: 10.13671/j.hjkxxb.2017.0069
[22] 王跃, 王莉莉, 赵广娜, 等. 北京冬季PM2.5重污染时段不同尺度环流形势及边界层结构分析 [J]. 气候与环境研究, 2014, 19(2): 173-184. doi: 10.3878/j.issn.1006-9585.2014.13178 WANG Y, WANG L L, ZHAO G N, et al. Analysis of different-scales circulation patterns and boundary layer structure of PM2.5 heavy pollutions in Beijing during winter [J]. Climatic and Environmental Research, 2014, 19(2): 173-184(in Chinese). doi: 10.3878/j.issn.1006-9585.2014.13178
[23] 徐栋夫, 曹萍萍, 王源程. 成都一次重污染过程的气溶胶光学特性垂直分布 [J]. 气象, 2020, 46(7): 948-958. doi: 10.7519/j.issn.1000-0526.2020.07.007 XU D F, CAO P P, WANG Y C. Study of the vertical distribution of aerosol optical properties during a heavy pollution event in Chengdu [J]. Meteorological Monthly, 2020, 46(7): 948-958(in Chinese). doi: 10.7519/j.issn.1000-0526.2020.07.007
[24] 马丽, 余晔, 王博, 等. 兰州春夏季PM10碳组分昼夜变化特征与来源分析 [J]. 环境科学, 2017, 38(4): 1289-1297. MA L, YU Y, WANG B, et al. Day-night variation and source apportionment of carbonaceous aerosols in PM10 during spring and summer of Lanzhou [J]. Environmental Science, 2017, 38(4): 1289-1297(in Chinese).
[25] 李建军, 沈振兴, 同帜, 等. 西安冬春季PM10中碳气溶胶的昼夜变化特征 [J]. 环境科学, 2009, 30(5): 1506-1513. doi: 10.3321/j.issn:0250-3301.2009.05.042 LI J J, SHEN Z X, TONG Z, et al. Day-night variation of carbonaceous aerosols in PM10 during winter and spring over Xi'an [J]. Environmental Science, 2009, 30(5): 1506-1513(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.05.042
[26] SIROIS A, BOTTENHEIM J W. Use of backward trajectories to interpret the 5-year record of PAN and O3ambient air concentrations at Kejimkujik National Park, Nova Scotia [J]. Journal of Geophysical Research Atmospheres, 1995, 100(D2): 2867. doi: 10.1029/94JD02951 [27] SOLAZZO E, BIANCONI R, PIROVANO G, et al. Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII [J]. Atmospheric Environment, 2012, 53: 75-92. doi: 10.1016/j.atmosenv.2012.02.045 [28] 刘景云, 刘子锐, 温天雪, 等. 石家庄秋季一次典型霾污染过程水溶性离子粒径分布特征 [J]. 环境科学, 2016, 37(9): 3258-3267. LIU J Y, LIU Z R, WEN T X, et al. Characteristics of the size distribution of water soluble inorganic ions during a typical hzae pollution in the autumn in Shijiazhuang [J]. Environmental Science, 2016, 37(9): 3258-3267(in Chinese).
[29] SUN Y L, JIANG Q, WANG Z F, et al. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013 [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(7): 4380-4398. doi: 10.1002/2014JD021641 [30] 宿文康, 鲍晓磊, 倪爽英, 等. 2018年石家庄市秋冬季典型霾污染特征 [J]. 环境科学, 2019, 40(11): 4755-4763. doi: 10.13227/j.hjkx.201903241 SU W K, BAO X L, NI S Y, et al. Characteristics of haze pollution episodes during autumn and winter in 2018 in Shijiazhuang [J]. Environmental Science, 2019, 40(11): 4755-4763(in Chinese). doi: 10.13227/j.hjkx.201903241
[31] 彭倩倩, 刘晓环, 杜金花, 等. 青岛冬季霾-沙尘重污染过程PM1理化特征及来源分析 [J]. 中国环境科学, 2020, 40(9): 3731-3740. doi: 10.3969/j.issn.1000-6923.2020.09.003 PENG Q Q, LIU X H, DU J H, et al. Physicochemical characteristics and source analysis of PM1 during winter haze-dust pollution event in Qingdao [J]. China Environmental Science, 2020, 40(9): 3731-3740(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.003
[32] LI P F, YAN R C, YU S C, et al. Reinstate regional transport of PM2.5 as a major cause of severe haze in Beijing [J]. PNAS, 2015, 112(21): E2739-E2740. doi: 10.1073/pnas.1502596112 [33] HUANG X J, LIU Z R, ZHANG J K, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing [J]. Atmospheric Research, 2016, 168: 70-79. doi: 10.1016/j.atmosres.2015.08.021 [34] KIM B M, TEFFERA S, ZELDIN M D. Characterization of PM2.5 and PM10 in the south Coast air basin of southern California: Part 1—spatial variations [J]. Journal of the Air & Waste Management Association, 2000, 50(12): 2034-2044. [35] 周敏, 陈长虹, 王红丽, 等. 上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征 [J]. 环境科学学报, 2012, 32(1): 81-92. doi: 10.13671/j.hjkxxb.2012.01.019 ZHOU M, CHEN C H, WANG H L, et al. Chemical characteristics of particulate matters during air pollution episodes in autumn of Shanghai, China [J]. Acta Scientiae Circumstantiae, 2012, 32(1): 81-92(in Chinese). doi: 10.13671/j.hjkxxb.2012.01.019
[36] 王娜, 殷宝辉, 王静, 等. 漯河市PM10和PM2.5中水溶性离子浓度特征及其来源解析 [J]. 环境科学研究, 2018, 31(12): 2073-2082. WANG N, YIN B H, WANG J, et al. Characteristics of water-soluble ion concentration associated with PM10 and PM2.5 and source apportionment in Luohe city [J]. Research of Environmental Sciences, 2018, 31(12): 2073-2082(in Chinese).
[37] 杨阳, 李杏茹, 陈曦, 等. 春季沙尘过程北京市不同粒径大气气溶胶污染特征及来源分析 [J]. 环境科学, 2018, 39(12): 5315-5322. doi: 10.13227/j.hjkx.201804237 YANG Y, LI X R, CHEN X, et al. Analysis of different particle sizes, pollution characteristics, and sources of atmospheric aerosols during the spring dust period in Beijing [J]. Environmental Science, 2018, 39(12): 5315-5322(in Chinese). doi: 10.13227/j.hjkx.201804237
[38] WANG Y, ZHUANG G S, TANG A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment, 2005, 39(21): 3771-3784. doi: 10.1016/j.atmosenv.2005.03.013 [39] GUO S, HU M, WANG Z B, et al. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: Implication of regional secondary formation [J]. Atmospheric Chemistry and Physics, 2010, 10(3): 947-959. doi: 10.5194/acp-10-947-2010 [40] WANG X F, WANG W X, YANG L X, et al. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions [J]. Atmospheric Environment, 2012, 63: 68-76. doi: 10.1016/j.atmosenv.2012.09.029 [41] HU M, WU Z J, SLANINA J, et al. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China [J]. Atmospheric Environment, 2008, 42(25): 6310-6320. doi: 10.1016/j.atmosenv.2008.02.015 [42] TIAN M, WANG H B, CHEN Y, et al. Characteristics of aerosol pollution during heavy haze events in Suzhou, China [J]. Atmospheric Chemistry and Physics, 2016, 16(11): 7357-7371. doi: 10.5194/acp-16-7357-2016 [43] KIM J Y, SONG C H, GHIM Y S, et al. An investigation on NH3 emissions and particulate NH4+-NO3− formation in East Asia [J]. Atmospheric Environment, 2006, 40(12): 2139-2150. doi: 10.1016/j.atmosenv.2005.11.048 [44] 黄怡民, 刘子锐, 温天雪, 等. 北京雾霾天气下气溶胶中水溶性无机盐粒径分布 [J]. 安全与环境学报, 2013, 13(4): 117-121. doi: 10.3969/j.issn.1009-6094.2013.04.026 HUANG Y M, LIU Z R, WEN T X, et al. Mass size distributions of the water-soluble inorganic ions in the haze-fog weather of Beijing [J]. Journal of Safety and Environment, 2013, 13(4): 117-121(in Chinese). doi: 10.3969/j.issn.1009-6094.2013.04.026
[45] 刘臻, 祁建华, 王琳, 等. 青岛大气气溶胶水溶性无机离子的粒径分布特征 [J]. 中国环境科学, 2012, 32(8): 1422-1432. doi: 10.3969/j.issn.1000-6923.2012.08.012 LIU Z, QI J H, WANG L, et al. Particle size distribution of water-soluble inorganic ions of atmospheric aerosol in Qingdao [J]. China Environmental Science, 2012, 32(8): 1422-1432(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.08.012
[46] ANDREAE M O, ANDREAE T W, ANNEGARN H, et al. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition [J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D24): 32119-32128. doi: 10.1029/98JD02280 [47] WANG J, ZHANG J S, LIU Z J, et al. Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China [J]. Atmospheric Research, 2017, 187: 138-146. doi: 10.1016/j.atmosres.2016.12.004 [48] LAN Z J, CHEN D L, LI X, et al. Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China [J]. Atmospheric Research, 2011, 100(1): 51-60. doi: 10.1016/j.atmosres.2010.12.022 [49] WHITBY K T, HUSAR R B, LIU B Y H. The aerosol size distribution of los angeles smog[M]//Aerosols and Atmospheric Chemistry. Amsterdam: Elsevier, 1972: 237-264. [50] 王红磊, 朱彬, 安俊琳, 等. 亚青会期间南京市气溶胶中OC和EC的粒径分布 [J]. 环境科学, 2014, 35(9): 3271-3279. doi: 10.13227/j.hjkx.2014.09.005 WANG H L, ZHU B, AN J L, et al. Size distribution and characterization of OC and EC in atmospheric aerosols during the Asian youth games of Nanjing, China [J]. Environmental Science, 2014, 35(9): 3271-3279(in Chinese). doi: 10.13227/j.hjkx.2014.09.005
[51] WANG X M, CHEN J M, CHENG T T, et al. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai [J]. Journal of Environmental Sciences, 2014, 26(9): 1894-1902. doi: 10.1016/j.jes.2014.07.003 [52] 宋明昊, 张小玲, 袁亮, 等. 成都冬季一次持续污染过程气象成因及气溶胶垂直结构和演变特征 [J]. 环境科学学报, 2020, 40(2): 408-417. doi: 10.13671/j.hjkxxb.2019.0421 SONG M H, ZHANG X L, YUAN L, et al. Meteorological effects and aerosol vertical structure and evolution characteristics of a continuous pollution process in winter in Chengdu [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 408-417(in Chinese). doi: 10.13671/j.hjkxxb.2019.0421
[53] LIU Z Y, FAIRLIE T D, UNO I, et al. Transpacific transport and evolution of the optical properties of Asian dust [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 116: 24-33. doi: 10.1016/j.jqsrt.2012.11.011 [54] 宋跃辉, 华灯鑫, 李仕春, 等. 微脉冲偏振激光雷达探测城市底层气溶胶 [J]. 光子学报, 2012, 41(10): 1140-1144. doi: 10.3788/gzxb20124110.1140 SONG Y H, HUA D X, LI S C, et al. Detection of bottom aerosols in urban area using micro-pulse polarization lidar [J]. Acta Photonica Sinica, 2012, 41(10): 1140-1144(in Chinese). doi: 10.3788/gzxb20124110.1140