-
环氧树脂双酚A二缩水甘油醚(epoxy bisphenol A diglycidyl ether, BADGE)是由环氧氯丙烷与双酚A(bisphenol A, BPA)在氢氧化钠存在下缩合反应合成的工业化合物[1],其结构如下所示。
BADGE被用于罐头食品和饮料的包装涂层超过半个世纪。在罐装食品中,涂层对于防止食品在生产和贮存过程中腐蚀包装材料以及防止金属迁移至食品中至关重要, BADGE是形成环氧树脂最基本的单体,也用作消除PVC生产中过量盐酸的添加剂[2]。BADGE广泛用于我们的日常生活中,如家具涂料、油漆、牙科密封胶等。2003年,BADGE的全球年产量高达95.7万吨[3]。
2005年,美国国家职业安全与健康研究所将BADGE认定为第三类致癌物和诱变剂,即认为对人类没有致癌性[4]。然而,随着环境流行病学和毒理学的发展,越来越多的研究表明BADGE具有遗传毒性和致癌性。如BADGE能够与DNA形成加合物,还可以通过诱变作用影响细胞基因的表达,并在体外实验中发现其具有致畸作用[5]。据报道,BADGE 及其水解产物对人淋巴细胞微核具有诱导作用,且 BADGE能促进mcf-7乳腺癌细胞的增殖[6]。作为一类增塑剂,BADGE可直接穿过胎盘到达胎儿,并具有破坏胎盘细胞脂质基团的能力等[1]。
BADGE及其衍生物(统称为BADGEs)在环境中广泛存在,如水环境[7-8],室内空气和灰尘[9-11]等。此外,作为涂层成分,BADGEs能够从包装涂层中迁移到食品中,造成食品污染[12-15]。这些污染物通过各种暴露途径进入人体,在人体尿液[3, 16-17]、血浆、血清、卵泡和脂肪[18-19]等组织中频繁检出。因此,明晰BADGEs等在环境介质、食品中的污染状态,了解该类物质的生物学毒性,对评估该类物质对环境和人体健康的影响有重要意义。
双酚A二缩水甘油醚的环境分布与毒性特征
Environmental distribution and toxicity characteristics of bisphenol A diglycidyl ether
-
摘要: 环氧树脂单体双酚A二缩水甘油醚(epoxy bisphenol A diglycidyl ether, BADGE)是一些食品接触材料中聚合物的单体,主要用于食品罐头等容器的涂层中,也可用于有机溶胶类容器的涂层。BADGE可从涂层中迁移,并发生水解等化学反应生成以BADGE∙2H2O、BADGE∙H2O为主的几种衍生物BADGEs。目前,废水处理厂水体(水相和颗粒物)、室内空气、灰尘等环境介质中都发现了BADGEs的踪迹,尤其是牙齿密封胶中其浓度水平较高。此外,在实验室模式生物、海洋哺乳动物以及人体血液、尿液、脂肪中均能够检出BADGEs,表明其可被生物体吸收。相关毒性实验表明,与内分泌干扰物双酚A类似,BADGEs具有一定的内分泌干扰性、细胞毒性、生殖发育毒性等。人体对BDAGE暴露的情况可通过监测其尿液中BADGEs的浓度水平体来体现。从现有数据看,人体对BADGEs的暴露水平不高,每日有效摄入量低于欧洲食品安全局于2004年规定的每日最大摄入量10 mg∙(kg∙Bw∙d)−1,其暴露主要来源于罐装食品。BADGEs属于增塑剂,可能会通过胎盘屏障,考虑到其毒性特征,建议孕妇少食罐装和袋装食品,以减少相关暴露。此外,需进一步研究BADGEs生物毒性和相关作用机理。Abstract: Epoxy bisphenol A diglycidyl ether (BADGE) is a polymer monomer in some food packaging materials, mainly used in the coating of food cans, as well as the coating of organosol containers. BADGE can migrate from the coating and undergo chemical reactions such as hydrolysis to generate several derivatives (defined as BADGEs), which are mainly BADGE∙2H2O and BADGE∙H2O. By far, BADGEs were found in various environmental mediums, such as wastewater (both water phase and particles), indoor air and indoor dust, especially with high concentration levels in dental sealant. Besides, BADGEs were also detected in model animals in the labs, sea mammals, and human body (urine, blood and lipid), which indicated they could be accumulated by biota. The results of toxic experiments demonstrated that similar to bisphenol A, BADGEs have cytotoxic, reproductive and development toxicities, and the potential to disrupt endocrine system. Urinary BADGEs were usually determined to monitor human exposure. The available data showed human were exposed to BADGEs at a relative low level, and the daily intakes were lower than the maximum value of 10 mg∙(kg∙Bw∙d)−1 suggested by the European Food Safety Agency in 2004. Canned foods are the main exposure source. BADGEs are plasticizers and may pass through the placental barrier. Considering their toxicity characteristics, we suggest pregnant women should eat less canned and bagged foods to reduce related exposure. Besides, we call for more researches on the biological toxicity of BADGEs and related mechanisms.
-
表 1 不同国家牙科密封胶中BADGEs的几何平均浓度(µg∙g-1)
Table 1. Geometric mean concentration (µg∙g-1) of bisphenol A diglycidyl ether and its derivatives (BADGEs) in dental sealants from different countries
国家
Countryn BADGE BADGE·2H2O BADGE·H2O BADGE·HCl BADGE·2HCl BADGE·HCl·H2O BADGEs 美国 51 0.30 12.5 1.36 0.30 2.10 1.96 50.2 韩国 10 0.29 15.9 2.28 1.24 3.99 12.0 54.3 希腊 4 n.d. 31.1 n.d. n.d. n.d. 8.15 41.5 列支敦士登 1 n.d. 6.29 n.d. n.d. n.d. 2.46 10.7 列支敦士登 1 n.d. 1780 n.d. n.d. 3.67 35.2 1820 日本 1 n.d. 1.45 n.d. n.d. n.d. n.d. 3.64 注: n.d.表示样品的平均浓度低于检出限(MLOQ)或定量限(LOQ); BADGE·2H2O、BADGE·H2O、BADGE、BADGE·HCl·H2O、BADGE·HCl和BADGE·2HCl的检出限分别为 1.31、2.19、0.44、0.44、0.44、 0.88 µg∙g−1.
Note: n.d. means the average concentration of the sample is lower than the limit of detection (MLOQ) or limit of quantification (LOQ); The limits of detection of BADGE·2H2O, BADGE·H2O, BADGE, BADGE·HCl·H2O, BADGE·HCl and BADGE·2HCl are 1.31, 2.19, 0.44, 0.44, 0.44, 0.88 µg∙g−1, respectively.表 2 不同国家室内粉尘中BADGEs的浓度 (ng·g-1) 以及检出率 (100%)
Table 2. Concentration (ng·g-1) and detection rate (%) of bisphenol A diglycidyl ether and its derivatives (BADGEs) in indoor dust from different countries
国家(年份)
Country (year)样品数
Sample number地点
LocationBADGE BADGE∙2H2O BADGE∙H2O BADGE·HCl·H2O BADGEs 文献
Reference美国(2006,2010) 40 1.30(77.5) 1060(100) 21.0(100) 132(100) 1300 [10] 美国(2014) 3 停车场 1080(33.0) [9] 4 汽车修理厂 2940(75.0) 7 车内 3680(42.9) 5 理发店 1000(20.0) 13 公共场所 7770(69.2) 26 住宅 4760(65.4) 12 实验室 3540(66.7) 13 办公室 7460(61.5) 中国(2010) 55 5.60(100) 997(100) 67.0(100) 131(100) 1380 [10] 韩国(2012) 41 13.0(100) 2300(100) 80.0(100) 352(100) 2890 [10] 日本(2012) 22 1.54(77.3) 1990(100) 24.0(95.5) 444(100) 2760 [10] 越南(2014) 16 住宅 9.00(68.8) 243(100) 27.4(100) 44.2(100) 324 [11] 18 商店超市 35.1(72.2) 343(100) 74.3(100) 39.6(94.4) 491 7 化验室 32.5(100) 226(100) 67.7(100) 38.9(100) 365 5 办公室 12.5(80.0) 168(100) 29.9(100) 8.21(100) 219 表 3 人体基质中BADGEs的浓度 (ng∙mL-1) 以及检出率(%)
Table 3. The concentration (ng∙mL-1) and detection rate (%) of BADGEs in human matrix
基质
Matrix国家(年份)
Country yearBADGE BADGE·2H2O BADGE·H2O BADGE·HCl BADGE·2HCl BADGE·HCl·H2O 文献
References尿液 中国
(2010)0.0930
(100)0.515
(96.2)0.0760
(92.3)0.0350
(53.8)[3] 中国
(2012)0.139 0.502 0.0460 0.0420 [3] 美国
(2011)0.121
(100)0.601
(100)0.0650
(93.5)0.0520
(63.5)[3] 希腊
(2012)n.d. 0.700
(90.0)n.d.
(9)n.d.
(19.0)[17] 印度
(2012)24.8
(99.0)12.2
(78.0)[17] 脂肪 美国
(2002)n.d.
(25.0)3.44
(60.0)n.d.
(15.0)n.d.
(5.00)n.d.
(5.00)n.d.
(20.0)[18] 血浆 美国
(2003)n.d. 7.15
(70.0)2.26
(65.0)n.d. n.d. n.d. [18] 血清1 韩国 0.628 0.439 [19] 血清2 韩国 0.457 0.154 [19] 注:目标物在尿液的浓度为几何平均浓度,在脂肪和血浆的浓度为中位数浓度;血清1为非石油化工厂工人样本,血清2为石油化工厂工人样本;
Note: The concentration in urine is the geometric mean concentration, and the concentration in fat and plasma is the median concentration; Serum 1 is a sample of non-petrochemical factory workers, and serum 2 is a sample of petrochemical factory workers;表 4 不同国家居民对BADGEs的每日暴露剂量(ng·(kg·bw·d)−1)
Table 4. Estimated daily exposure doses of BADGEs based on potential sources in different countries(ng·(kg·bw·d)−1)
-
[1] MARQUEÑO A, PÉREZ-ALBALADEJO E, FLORES C, et al. Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells [J]. Environmental Pollution, 2019, 244: 513-521. doi: 10.1016/j.envpol.2018.10.045 [2] LINTSCHINGER J, RAUTER W. Simultaneous determination of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their hydrolysis and chlorohydroxy derivatives in canned foods [J]. European Food Research and Technology, 2000, 211(3): 211-217. doi: 10.1007/s002170050026 [3] WANG L, WU Y H, ZHANG W, et al. Widespread occurrence and distribution of bisphenol A diglycidyl ether (BADGE) and its derivatives in human urine from the United States and China [J]. Environmental Science & Technology, 2012, 46(23): 12968-12976. [4] HYOUNG U J, YANG Y J, KWON S K, et al. Developmental toxicity by exposure to bisphenol A diglycidyl ether during gestation and lactation period in sprague-dawley male rats [J]. Journal of Preventive Medicine and Public Health, 2007, 40(2): 155. doi: 10.3961/jpmph.2007.40.2.155 [5] KWON S K, YANG Y J, CHUN Y J, et al. Decreased of clusterin mRNA expression of epididymis following exposure to bisphenol A diglycidyl ether during gestation and lactation in Sprague-Dawley rats [J]. Environmental Health and Toxicology 2008, 23(4): 291-299. [6] HUTLER WOLKOWICZ I, SVARTZ G V, ARONZON C M, et al. Developmental toxicity of bisphenol A diglycidyl ether (epoxide resin badge) during the early life cycle of a native amphibian species [J]. Environmental Toxicology and Chemistry, 2016, 35(12): 3031-3038. doi: 10.1002/etc.3491 [7] BALLESTEROS-GÓMEZ A, RUIZ F J, RUBIO S, et al. Determination of bisphenols A and F and their diglycidyl ethers in wastewater and river water by coacervative extraction and liquid chromatography-fluorimetry [J]. Analytica Chimica Acta, 2007, 603(1): 51-59. doi: 10.1016/j.aca.2007.09.048 [8] XUE J C, KANNAN K. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA [J]. Science of the Total Environment, 2019, 648: 442-449. doi: 10.1016/j.scitotenv.2018.08.047 [9] XUE J C, WAN Y J, KANNAN K. Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure [J]. Chemosphere, 2016, 151: 1-8. doi: 10.1016/j.chemosphere.2016.02.038 [10] WANG L, LIAO C Y, LIU F, et al. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE), and their hydrolysis products in indoor dust from the United States and three East Asian countries [J]. Environmental Science & Technology, 2012, 46(21): 11584-11593. [11] TRAN T M, MINH T B, KUMOSANI T A, et al. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: Implications for exposure [J]. Chemosphere, 2016, 144: 1553-1559. doi: 10.1016/j.chemosphere.2015.10.028 [12] PETERSEN H, BIEREICHEL A, BURSEG K, et al. Bisphenol A diglycidyl ether (BADGE) migrating from packaging material ‘disappears’ in food: Reaction with food components [J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008, 25(7): 911-920. [13] CIRILLO T, ESPOSITO F, FASANO E, et al. BPA, BPB, BPF, BADGE and BFDGE in canned beers from the Italian market [J]. Food Additives & Contaminants:Part B, 2019, 12(4): 268-274. [14] YONEKUBO J, HAYAKAWA K, SAJIKI J. Concentrations of bisphenol A, bisphenol A diglycidyl ether, and their derivatives in canned foods in Japanese markets [J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2041-2047. doi: 10.1021/jf073106n [15] CABADO A G, ALDEA S, PORRO C, et al. Migration of BADGE (bisphenol A diglycidyl-ether) and BFDGE (bisphenol F diglycidyl-ether) in canned seafood [J]. Food and Chemical Toxicology, 2008, 46(5): 1674-1680. doi: 10.1016/j.fct.2008.01.006 [16] XUE J C, WU Q, SAKTHIVEL S, et al. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children [J]. Environmental Research, 2015, 137: 120-128. doi: 10.1016/j.envres.2014.12.007 [17] ASIMAKOPOULOS A G, THOMAIDIS N S, KANNAN K. Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece [J]. Science of the Total Environment, 2014, 470/471: 1243-1249. doi: 10.1016/j.scitotenv.2013.10.089 [18] WANG L, XUE J C, KANNAN K. Widespread occurrence and accumulation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat [J]. Environmental Science & Technology, 2015, 49(5): 3150-3157. [19] KIM S I, YANG Y J, HONG Y P, et al. Distribution of serum bisphenol A diglycidyl ether and its metabolite in Korean adult men and its association with reproductive hormone levels [J]. Molecular & Cellular Toxicology, 2015, 11(1): 71-78. [20] BELLO A, XUE Y L, BELLO D. Urinary biomonitoring of occupational exposures to Bisphenol A Diglycidyl Ether (BADGE) - based epoxy resins among construction painters in metal structure coating [J]. Environment International, 2021, 156: 106632. doi: 10.1016/j.envint.2021.106632 [21] POOLE A, van HERWIJNEN P, WEIDELI H, et al. Review of the toxicology, human exposure and safety assessment for bisphenol A diglycidylether (BADGE) [J]. Food Additives & Contaminants, 2004, 21(9): 905-919. [22] HEMMINKI K. Binding of styrene oxide to amino acids, human serum proteins and hemoglobin[C]//Toxic Interfaces of Neurones, Smoke and Genes, 1986. [23] VANDENBERG L N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA) [J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010 [24] XUE J C, KANNAN P, KUMOSANI T A, et al. Resin-based dental sealants as a source of human exposure to bisphenol analogues, bisphenol A diglycidyl ether, and its derivatives [J]. Environmental Research, 2018, 162: 35-40. doi: 10.1016/j.envres.2017.12.011 [25] ZHANG J, LV C, LI Z L, et al. Interactions of bisphenol diglycidyl ethers with estrogen receptors α: Fluorescence polarization, reporter gene, and molecular modeling investigations [J]. Toxicology Letters, 2020, 332: 14-19. doi: 10.1016/j.toxlet.2020.06.023 [26] CAO X L, DUFRESNE G, CLEMENT G, et al. Levels of bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) in canned liquid infant formula products in Canada and dietary intake estimates [J]. Journal of Aoac International, 2009, 92(6): 1780-1789. doi: 10.1093/jaoac/92.6.1780 [27] MUNGUIA-LOPEZ E M, SOTO-VALDEZ H. Effect of heat processing and storage time on migration of bisphenol A (BPA) and bisphenol A-diglycidyl ether (BADGE) to aqueous food simulant from Mexican can coatings [J]. Journal of Agricultural and Food Chemistry, 2001, 49(8): 3666-3671. doi: 10.1021/jf0009044 [28] SAFTA M, LIMAM I, BOUAJINA A, et al. Characterization of the migration of bisphenol A and F diglycidyl ethers from epoxy-coated containers to food simulants [J]. Analytical Letters, 2018, 51(3): 296-311. doi: 10.1080/00032719.2017.1331353 [29] XUE J C, VENKATESAN A K, WU Q, et al. Occurrence of bisphenol A diglycidyl ethers (BADGEs) and novolac glycidyl ethers (NOGEs) in archived biosolids from the US EPA's targeted national sewage sludge survey [J]. Environmental Science & Technology, 2015, 49(11): 6538-6544. [30] CHANG Y, NGUYEN C, PARANJPE V R, et al. Analysis of bisphenol A diglycidyl ether (BADGE) and its hydrolytic metabolites in biological specimens by high-performance liquid chromatography and tandem mass spectrometry [J]. Journal of Chromatography B, 2014, 965: 33-38. doi: 10.1016/j.jchromb.2014.06.005 [31] BENTLEY P, BIERI F, KUSTER H, et al. Hydrolysis of bisphenol A diglycidylether by epoxide hydrolases in cytosolic and microsomal fractions of mouse liver and skin: Inhibition by bis epoxycyclopentylether and the effects upon the covalent binding to mouse skin DNA [J]. Carcinogenesis, 1989, 10(2): 321-327. doi: 10.1093/carcin/10.2.321 [32] BOOGAARD P J, DENNEMAN M A, van SITTERT N J. Dermal penetration and metabolism of five glycidyl ethers in human, rat and mouse skin [J]. Xenobiotica, 2000, 30(5): 469-483. doi: 10.1080/004982500237488 [33] CLIMIE I J G, HUTSON D H, STOYDIN G. Metabolism of the epoxy resin component 2, 2-bis[4-(2, 3-epoxypropoxy)phenyl]propane, the diglycidyl ether of bisphenol a (DGEBPA) in the mouse.;Part I. A comparison of the fate of a single dermal application and of a single oral dose of 14C-DGEBPA [J]. Xenobiotica, 1981, 11(6): 391-399. doi: 10.3109/00498258109045850 [34] XUE J C, KANNAN K. Novel finding of widespread occurrence and accumulation of bisphenol A diglycidyl ethers (BADGEs) and novolac glycidyl ethers (NOGEs) in marine mammals from the United States coastal waters [J]. Environmental Science & Technology, 2016, 50(4): 1703-1710. [35] SUÁREZ S, SUEIRO R A, GARRIDO J. Genotoxicity of the coating lacquer on food cans, bisphenol A diglycidyl ether (BADGE), its hydrolysis products and a chlorohydrin of BADGE [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2000, 470(2): 221-228. doi: 10.1016/S1383-5718(00)00109-1 [36] RAMILO G, VALVERDE I, LAGO J, et al. Cytotoxic effects of BADGE (bisphenol A diglycidyl ether) and BFDGE (bisphenol F diglycidyl ether) on Caco-2 cells in vitro [J]. Archives of Toxicology, 2006, 80(11): 748-755. doi: 10.1007/s00204-006-0121-1 [37] BROWN S H J, EATHER S R, FREEMAN D J, et al. A lipidomic analysis of placenta in preeclampsia: Evidence for lipid storage [J]. PLoS One, 2016, 11(9): e0163972. doi: 10.1371/journal.pone.0163972 [38] RUSSO G, CAPUOZZO A, BARBATO F, et al. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data [J]. Chemosphere, 2018, 201: 432-440. doi: 10.1016/j.chemosphere.2018.03.014 [39] HEMMINKI K, VAINIO H. Alkylation of nucleic acid bases by epoxides and glycidyl ethers [J]. Developments in Toxicology and Environmental Science, 1980, 8: 241-244. [40] CANTER D A, ZEIGER E, HAWORTH S, et al. Comparative mutagenicity of aliphatic epoxides in Salmonella [J]. Mutation Research/Genetic Toxicology, 1986, 172(2): 105-138. doi: 10.1016/0165-1218(86)90069-8 [41] SUEIRO R A, SUÁREZ S, ARAUJO M, et al. Study on mutagenic effects of bisphenol A diglycidyl ether (BADGE) and its derivatives in the Escherichia coli tryptophan reverse mutation assay [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2006, 609(1): 11-16. doi: 10.1016/j.mrgentox.2006.05.012 [42] WILLIAMS M J, CAO H, LINDKVIST T, et al. Exposure to the environmental pollutant bisphenol A diglycidyl ether (BADGE) causes cell over-proliferation in Drosophila [J]. Environmental Science and Pollution Research, 2020, 27(20): 25261-25270. doi: 10.1007/s11356-020-08899-7 [43] WRIGHT H M, CLISH C B, MIKAMI T, et al. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation [J]. The Journal of Biological Chemistry, 2000, 275(3): 1873-1877. doi: 10.1074/jbc.275.3.1873 [44] CHAMORRO-GARCÍA R, KIRCHNER S, LI X, et al. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism [J]. Environmental Health Perspectives, 2012, 120(7): 984-989. doi: 10.1289/ehp.1205063 [45] NAKAZAWA H, YAMAGUCHI A, INOUE K, et al. In vitro assay of hydrolysis and chlorohydroxy derivatives of bisphenol A diglycidyl ether for estrogenic activity [J]. Food and Chemical Toxicology, 2002, 40(12): 1827-1832. doi: 10.1016/S0278-6915(02)00165-5 [46] BRESLIN W J, KIRK H D, JOHNSON K A. Teratogenic evaluation of diglycidyl ether of bisphenol A (DGEBPA) in New Zealand White rabbits following dermal exposure [J]. Fundamental and Applied Toxicology, 1988, 10(4): 736-743. doi: 10.1016/0272-0590(88)90200-X [47] LYONS G. Bisphenol A: A Known Endocrine Disruptor. A WWF European Toxics Programme Report 2000 [EB/OL]. https://wwfeu.awsassets.panda.org/downloads/bisphenol.pdf. [48] YANG Y J, LEE S Y, KIM K Y, et al. Acute testis toxicity of bisphenol A diglycidyl ether in Sprague-Dawley rats [J]. Journal of Preventive Medicine and Public Health, 2010, 43(2): 131-137. doi: 10.3961/jpmph.2010.43.2.131 [49] HANAOKA T, KAWAMURA N, HARA K, et al. Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents [J]. Occupational and Environmental Medicine, 2002, 59(9): 625-628. doi: 10.1136/oem.59.9.625 [50] XUE J C, LIU W B, KANNAN K. Bisphenols, benzophenones, and bisphenol A diglycidyl ethers in textiles and infant clothing [J]. Environmental Science & Technology, 2017, 51(9): 5279-5286.