-
汞是一种全球污染物,其具有极强的遗传毒性和神经毒性,对人类和生态系统的健康具有广泛影响[1]。大气是汞全球传输的最主要通道,每年全球大约有8千吨汞被排放到大气中,其中人为来源约占39%,自然来源约占6%,以及被二次释放到大气中的汞约占55%左右[2]。大气中汞的存在形式主要有气态元素汞(gaseous elemental mercury, GEM)、活性气态汞(reactive gaseous mercury, RGM)和颗粒态汞(particulate bound mercury, PBM)[3]。其中GEM是大气中汞的主要存在形式,约占大气气态总汞的95%以上[3- 4],并且GEM水溶性较低(3.03×10−7 mol·L−1, 101325 Pa, 25 ℃)[5],化学性质稳定,在大气中的停留时间可长达0.5—2 a,可随大气环流迁移至距离排放源几千公里的地方。因此,在没有明显汞污染源的偏远地区,如南北极、青藏高原等也可检测到显著的人为汞污染[6-7]。RGM为存在于大气气相中氧化态汞化合物,约占大气汞的3 %左右[3],包括HgCl2、HgBr2和Hg(OH)2等多种氧化态汞。RGM化学性质较活泼,在大气中的浓度较低,易溶于水,可吸附在大气颗粒物表面转化为颗粒态汞,因此具有较短的大气停留时间。PBM在大气汞中占比更低,通常低于1%。与RGM类似,PBM可通过干湿沉降从大气中去除。GEM可在太阳辐射、大气氧化物等作用下转化为RGM与PBM,进而沉降至地表;而沉降至地表的汞还可通过化学与生物还原转化为GEM[8-11],再次进入到大气中,从而进行长距离迁移。
大气中汞的氧化还原反应可改变其化学形态,对汞的环境行为具有至关重要的作用。例如,在极地地区春季大气汞“亏损”事件中[12],溴自由基引发零价汞的氧化导致大气零价汞显著降低[13],氧化态汞的沉降也使极地地区成为汞重要的汇[14]。此外,大气中存在的多种氧化剂如O3、·OH、NO3和各种卤素自由基等,可将GEM氧化为RGM。同时,RGM又可以通过光致还原反应转化为GEM[9, 15]。大气中RGM的液相还原主要发生在大气液滴中,由于Hg0的较高蒸汽压与低的汞溶解性,液相还原生成的Hg0可快速扩散至气相,导致大气中Hg0的浓度增加和半衰期延长。但是大气水相的均相和非均相研究主要以实验和地学模型为主,不是本文讨论的重点,不在此进行详细论述。大气中零价汞(Hg0)与一价汞(HgⅠ)和二价汞(HgⅡ)的主要光化学转化机制如图1所示。为评估全球汞循环,建立汞全球传输模型,需要深入了解大气汞的氧化还原过程。但是大气中自由基与气态元素汞的含量均极低,且氧化还原反应中过渡态存在时间极短,给大气汞氧化还原机制的实验研究带来了诸多困难。同时,大气反应的实验室模拟通常存在器壁效应[16],与真实大气反应存在一定的差异。随着计算机技术的快速发展,计算化学越来越多地应用于大气汞的化学转化机制研究。本文从计算化学角度,总结了近年来GEM被大气氧化剂氧化的理论研究进展,包括氧化产物的稳定性研究、反应机制的理论推测以及反应速率的计算等;同时还总结了采用高精度量子化学方法计算大气中HgⅠ和HgⅡ直接进行光解反应的反应分支比和反应速率等最新研究进展。
大气汞氧化还原过程与机制的计算化学研究进展
Advances in computational chemistry for oxidation and reduction of mercury in the atmosphere
-
摘要: 大气中汞的氧化还原反应对于其全球生物地球化学循环起着极其重要的作用,它促进了汞在全球范围内的扩散。汞主要以气态元素汞的形态释放到大气中,并经历复杂的均相和非均相化学反应,被氧化为活性气态汞和颗粒态汞;同时,活性气态汞也可经过光致还原反应光解生成气态元素汞。计算化学是一种基于理论方法利用计算软件来对化学现象和本质进行解释和预测的方法,现已广泛用于大气汞氧化还原反应机制的研究。本文从计算化学角度出发,综述了大气中常见氧化剂包括O3、·OH、NO3和各种卤素自由基等对气态元素汞的氧化机制的理论研究,包括通过计算氧化产物的键解离能、键长和生成焓等热力学参数来研究反应产物的稳定性;通过计算反应的中间体和过渡态来阐述微观反应机制;通过计算反应速率常数来研究反应进行的快慢等。同时,本文还综述了最新报道的应用高精度量子化学计算方法研究活性气态汞还原为气态元素汞的反应机制,包括活性气态汞的紫外可见吸收光谱、势能面、光解反应速率以及光解反应的分支比等。了解大气汞的氧化还原反应的计算化学研究进展,对于深入了解汞在大气中的迁移转化具有至关重要的作用。Abstract: The redox reactions of atmospheric mercury play an important role in the biogeochemical cycle of mercury. Mercury is mainly released into the atmosphere as gaseous elemental mercury (GEM), which undergoes complex redox reactions to be oxidized to reactive gaseous mercury (RGM) and particulate bound mercury (PBM). Meanwhile, RGM also can be photolyzed to GEM. Computational chemistry is an approach covering any use of computing in the direct study of chemical problems, which is widely used in studying the mechanism of atmospheric mercury redox reactions. This review summarizes the theoretical studies of the oxidation mechanism of GEM by common atmospheric oxidants such as O3, ·OH, NO3 and halogen radicals, including bond dissociation energy, transition states, rate constant and so on. Meanwhile, this article also reviews the photodissociation mechanisms of RGM based on high-level quantum chemical methods, including the UV-Vis absorption spectra and cross-sections of RGM, two-dimensional potential energy surfaces, photodissociation yields and photolysis rates. Understanding the theoretical studies on the photochemistry of mercury in the atmosphere is helpful to understand the global atmospheric mercury distribution, transport, and lifetime.
-
表 1 BrHg—Y和ClHg—Y在0 K下的键解离能
Table 1. Bond dissociation energy of BrHg—Y and ClHg—Y at 0 K
BrHg—Y化合物
Compounds of BrHg—Y键离解能D0/(kJ·mol−1)
Bond dissociation energy
at 0 KClHg—Y化合物
Compounds of ClHg—Y键离解能D0/(kJ·mol−1)
Bond dissociation energy
at 0 KBrHg—Br 305.4[47], 303.8[44] ClHg—Cl 337.0[36] BrHg—NO2 138.9[48], 149.0[37], 142.7[40], 139.3[36] ClHg—NO2 153.4[36] anti-BrHg—ONO 156.1[48], 160.7[37], 151.9[40], 150.2[36] ClHg—ONO 165.0[36] syn-BrHg—ONO 177.0[48], 182.2[37], 177.4[40], 176.1[36] BrHg—OOH 177.4[37], 167.4[36] ClHg—OOH 183.1[36] BrHg—OBr 232.6[36], 223.8[37] ClHg—OBr 237.0[36] BrHg—OCl 220.6[36], 211.7[37] ClHg—OCl 225.1[36] BrHg—NO 49.2[37] ClHg—NO 54.4[36] BrHg—OO 27.9[36] ClHg—OO 33.0[36] BrHg—OI 54.8[37] BrHg—Cl 83.46[37] BrHg—I 70.06[37] 表 2 RGM的解离反应和解离速率常数
Table 2. Dissociation reaction and dissociation rate of RGM
解离反应
Dissociation reaction速率常数
Dissociation rate参考文献
ReferencesHgBr+M→Hg0 + Br +M 1.6×10−9 cm3·molecule−1·s−1 [36] HOHg+M → Hg0 + OH +M 1.22×10−9 cm3·molecule−1·s−1 [29] HgBr → Hg0 + Br 3×10−2 s−1 [15] HOHg → Hg0 + OH 1×10−2 s−1 [15] HgO → Hg0 + O 5.42×10−1 s−1 [65] HgBrO → Hg0 + Br + O 2.95×10−2 s−1 [9] HgBrO→ HgO+ Br 2.95×10−2 s−1 [9] HgBrOH →Hg0 + Br + OH 1.07×10−5 s−1 [65] HgBrOH →·HgOH + Br 1.07×10−5 s−1 [65] HgBrOH → HgBr + OH 1.07×10−5 s−1 [65] HgBrOH → HgBrO + H 1.07×10−5 s−1 [65] HgBrOOH→ Hg0 + Br + OOH 1.32×10−2 s−1 [65] HgBrOOH→ HgBrO + OH 1.32×10−2 s−1 [65] HgBrOOH→ HgBr + OOH 1.32×10−2 s−1 [65] HgBrOOH→ HgBrOH + O 1.32×10−2 s−1 [65] syn-HgBrONO → HgBrO+ NO 9.6×10−4 s−1 [65] syn-HgBrONO → HgBr + NO2 9.6×10−4 s−1 [65] -
[1] 史建波, 阴永光, 江桂斌. 汞的分子转化与长距离传输[M]. 北京: 科学出版社, 2019. SHI J B, YIN Y G, JIANG G B. Molecular transformation and long-range transport of mercury [M]. Beijing: Science Press, 2019(in Chinese).
[2] SAIZ-LOPEZ A, TRAVNIKOV O, SONKE J E, et al. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere [J]. PNAS, 2020, 117(49): 30949-30956. doi: 10.1073/pnas.1922486117 [3] 方莹莹, 王颖, 史建波, 等. 大气中活性气态汞的分析方法和赋存转化 [J]. 化学进展, 2021, 33(1): 151-161. FANG Y Y, WANG Y, SHI J B, et al. Analysis methods, occurrence, and transformation of reactive gaseous mercury in the atmosphere [J]. Progress in Chemistry, 2021, 33(1): 151-161(in Chinese).
[4] SCHROEDER W H, MUNTHE J. Atmospheric mercury—An overview [J]. Atmospheric Environment, 1998, 32(5): 809-822. doi: 10.1016/S1352-2310(97)00293-8 [5] LIN C J, PEHKONEN S O. The chemistry of atmospheric mercury: A review [J]. Atmospheric Environment, 1999, 33(13): 2067-2079. doi: 10.1016/S1352-2310(98)00387-2 [6] SHAO J J, SHI J B, DUO B, et al. Mercury in alpine fish from four rivers in the Tibetan Plateau [J]. Journal of Environmental Sciences, 2016, 39: 22-28. doi: 10.1016/j.jes.2015.09.009 [7] POISSANT L, ZHANG H H, CANÁRIO J, et al. Critical review of mercury fates and contamination in the arctic tundra ecosystem [J]. Science of the Total Environment, 2008, 400(1/2/3): 173-211. [8] KHIRI D, LOUIS F, ČERNUŠÁK I, et al. BrHgO• + CO: Analogue of OH + CO and reduction path for Hg(II) in the atmosphere [J]. ACS Earth and Space Chemistry, 2020, 4(10): 1777-1784. doi: 10.1021/acsearthspacechem.0c00171 [9] FRANCÉS-MONERRIS A, CARMONA-GARCÍA J, ACUÑA A U, et al. Photodissociation mechanisms of major mercury(II) species in the atmospheric chemical cycle of mercury [J]. Angewandte Chemie (International Ed. in English), 2020, 59(19): 7605-7610. doi: 10.1002/anie.201915656 [10] LU X, LIU Y R, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis bem [J]. Environmental Science & Technology, 2016, 50(8): 4366-4373. [11] DENG L, WU F, DENG N S, et al. Photoreduction of mercury(II) in the presence of algae, Anabaena cylindrical [J]. Journal of Photochemistry and Photobiology B:Biology, 2008, 91(2/3): 117-124. [12] SCHROEDER W H, ANLAUF K G, BARRIE L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530 [13] HOLMES C D, JACOB D J, CORBITT E S, et al. Global atmospheric model for mercury including oxidation by bromine atoms [J]. Atmospheric Chemistry and Physics, 2010, 10(24): 12037-12057. doi: 10.5194/acp-10-12037-2010 [14] WANG S Y, MCNAMARA S M, MOORE C W, et al. Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion [J]. PNAS, 2019, 116(29): 14479-14484. doi: 10.1073/pnas.1900613116 [15] SAIZ-LOPEZ A, ACUÑA A U, TRABELSI T, et al. Gas-phase photolysis of Hg(I) radical species: A new atmospheric mercury reduction process [J]. Journal of the American Chemical Society, 2019, 141(22): 8698-8702. doi: 10.1021/jacs.9b02890 [16] ARIYA P A, KHALIZOV A, GIDAS A. Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications [J]. The Journal of Physical Chemistry A, 2002, 106(32): 7310-7320. doi: 10.1021/jp020719o [17] CALVERT J G, LINDBERG S E. Mechanisms of mercury removal by O3 and OH in the atmosphere [J]. Atmospheric Environment, 2005, 39(18): 3355-3367. doi: 10.1016/j.atmosenv.2005.01.055 [18] SHEPLER B C, PETERSON K A. Mercury monoxide: A systematic investigation of its ground electronic state [J]. The Journal of Physical Chemistry A, 2003, 107(11): 1783-1787. doi: 10.1021/jp027512f [19] FILATOV M, CREMER D. Revision of the dissociation energies of mercury chalcogenides: Unusual types of mercury bonding [J]. Chemphyschem, 2004, 5(10): 1547-1557. doi: 10.1002/cphc.200301207 [20] HALL B. The gas phase oxidation of elemental mercury by ozone [J]. Water, Air, and Soil Pollution, 1995, 80(1/2/3/4): 301-315. [21] TOSSELL J A. Calculation of the energetics for oxidation of gas-phase elemental Hg by Br and BrO [J]. The Journal of Physical Chemistry A, 2003, 107(39): 7804-7808. doi: 10.1021/jp030390m [22] PAL B, ARIYA P A. Studies of ozone initiated reactions of gaseous mercury: Kinetics, product studies, and atmospheric implications [J]. Physical Chemistry Chemical Physics, 2004, 6(3): 572. doi: 10.1039/b311150d [23] SUMNER A L, SPICER C W, SATOLA J, et al. Environmental chamber studies of mercury reactions in the atmosphere[M]//Dynamics of Mercury Pollution on Regional and Global Scales: . New York: Springer-Verlag, : 193-212. [24] SNIDER G, RAOFIE F, ARIYA P A. Effects of relative humidity and CO(g) on the O3-initiated oxidation reaction of Hg0(g): Kinetic & product studies [J]. Physical Chemistry Chemical Physics, 2008, 10(36): 5616. doi: 10.1039/b801226a [25] HYNES A J, DONOHOUE D L, GOODSITE M E, et al. Our current understanding of major chemical and physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial interfacesMercury Fate and Transport in the Global Atmosphere, 2009: 427-457. DOI:10.1007/978-0-387-93958-2_14. [26] SOMMAR J, GÅRDFELDT K, STRÖMBERG D, et al. A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury [J]. Atmospheric Environment, 2001, 35(17): 3049-3054. doi: 10.1016/S1352-2310(01)00108-X [27] GOODSITE M E, PLANE J M C, SKOV H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere [J]. Environmental Science & Technology, 2004, 38(6): 1772-1776. [28] EZARFI N, TOUIMI BENJELLOUN A, SABOR S, et al. Theoretical investigations of structural, thermal properties and stability of the group 12 metal M(XH) isomers in atmosphere: M = (Zn, Cd, Hg) and XH = (OH, SH) [J]. Theoretical Chemistry Accounts, 2019, 138(9): 1-14. [29] DIBBLE T S, TETU H L, JIAO Y G, et al. Modeling the OH-initiated oxidation of mercury in the global atmosphere without violating physical laws [J]. The Journal of Physical Chemistry. A, 2020, 124(2): 444-453. doi: 10.1021/acs.jpca.9b10121 [30] CREMER D, KRAKA E, FILATOV M. Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory [J]. Chemphyschem, 2008, 9(17): 2510-2521. doi: 10.1002/cphc.200800510 [31] BAUER D, D’OTTONE L, CAMPUZANO-JOST P, et al. Gas phase elemental mercury: A comparison of LIF detection techniques and study of the kinetics of reaction with the hydroxyl radical [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 157(2/3): 247-256. [32] HOROWITZ H M, JACOB D J, ZHANG Y X, et al. A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget [J]. Atmospheric Chemistry and Physics, 2017, 17(10): 6353-6371. doi: 10.5194/acp-17-6353-2017 [33] WANG F, SAIZ-LOPEZ A, MAHAJAN A S, et al. Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1323-1335. doi: 10.5194/acp-14-1323-2014 [34] SHEPLER B C, BALABANOV N B, PETERSON K A. Ab initio thermochemistry involving heavy atoms: an investigation of the reactions Hg + IX (X = I, br, cl, O) [J]. The Journal of Physical Chemistry A, 2005, 109(45): 10363-10372. doi: 10.1021/jp0541617 [35] TELLINGHUISEN J, ASHMORE J G. Mixed representations for diatomic spectroscopic data: Application to HgBr [J]. Chemical Physics Letters, 1983, 102(1): 10-16. doi: 10.1016/0009-2614(83)80647-2 [36] DIBBLE T S, ZELIE M J, MAO H. Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals [J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10271-10279. doi: 10.5194/acp-12-10271-2012 [37] JIAO Y G, DIBBLE T S. Quality structures, vibrational frequencies, and thermochemistry of the products of reaction of BrHg• with NO2, HO2, ClO, BrO, and IO [J]. The Journal of Physical Chemistry A, 2015, 119(42): 10502-10510. doi: 10.1021/acs.jpca.5b04889 [38] DIBBLE T S, SCHWID A C. Thermodynamics limits the reactivity of BrHg radical with volatile organic compounds [J]. Chemical Physics Letters, 2016, 659: 289-294. doi: 10.1016/j.cplett.2016.07.065 [39] TOYOTA K, DASTOOR A P, RYZHKOV A. Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation [J]. Atmospheric Chemistry and Physics, 2014, 14(8): 4135-4167. doi: 10.5194/acp-14-4135-2014 [40] JIAO Y G, DIBBLE T S. First kinetic study of the atmospherically important reactions BrHg˙ + NO2 and BrHg˙ + HOO [J]. Physical Chemistry Chemical Physics, 2017, 19(3): 1826-1838. doi: 10.1039/C6CP06276H [41] DONOHOUE D L, BAUER D, COSSAIRT B, et al. Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with br: A pulsed laser photolysis-pulsed laser induced fluorescence study [J]. The Journal of Physical Chemistry A, 2006, 110(21): 6623-6632. doi: 10.1021/jp054688j [42] SUN G Y, SOMMAR J, FENG X B, et al. Mass-dependent and -independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br [J]. Environmental Science & Technology, 2016, 50(17): 9232-9241. [43] KHALIZOV A F, VISWANATHAN B, LARREGARAY P, et al. A theoretical study on the reactions of Hg with halogens: atmospheric implications [J]. The Journal of Physical Chemistry A, 2003, 107(33): 6360-6365. doi: 10.1021/jp0350722 [44] SHEPLER B C, BALABANOV N B, PETERSON K A. Hg+Br→HgBr recombination and collision-induced dissociation dynamics [J]. The Journal of Chemical Physics, 2007, 127(16): 164304. doi: 10.1063/1.2777142 [45] RAOFIE F, ARIYA P A. Product study of the gas-phase BrO-initiated oxidation of Hg0: Evidence for stable Hg1+ compounds [J]. Environmental Science & Technology, 2004, 38(16): 4319-4326. [46] TAS E, OBRIST D, PELEG M, et al. Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2429-2440. doi: 10.5194/acp-12-2429-2012 [47] BALABANOV N B, PETERSON K A. Mercury and reactive halogens: The thermochemistry of Hg + {Cl2, Br2, BrCl, ClO, and BrO} [J]. The Journal of Physical Chemistry A, 2003, 107(38): 7465-7470. doi: 10.1021/jp035547p [48] DIBBLE T S, ZELIE M J, JIAO Y G. Quantum chemistry guide to PTRMS studies of as-yet undetected products of the bromine-atom initiated oxidation of gaseous elemental mercury [J]. The Journal of Physical Chemistry A, 2014, 118(36): 7847-7854. doi: 10.1021/jp5041426 [49] TOKOS J J S, HALL B, CALHOUN J A, et al. Homogeneous gas-phase reaction of Hg° with H2O2,CH3I, AND (CH3)2S: Implications for atmospheric Hg cycling [J]. Atmospheric Environment, 1998, 32(5): 823-827. doi: 10.1016/S1352-2310(97)00171-4 [50] SOMMAR J, HALLQUIST M, LJUNGSTRÖM E, et al. On the gas phase reactions between volatile biogenic mercury species and the nitrate radical [J]. Journal of Atmospheric Chemistry, 1997, 27(3): 233-247. doi: 10.1023/A:1005873712847 [51] PELEG M, TAS E, OBRIST D, et al. Observational evidence for involvement of nitrate radicals in nighttime oxidation of mercury [J]. Environmental Science & Technology, 2015, 49(24): 14008-14018. [52] RUTTER A P, SHAKYA K M, LEHR R, et al. Oxidation of gaseous elemental mercury in the presence of secondary organic aerosols [J]. Atmospheric Environment, 2012, 59: 86-92. doi: 10.1016/j.atmosenv.2012.05.009 [53] KIM P R, HAN Y J, HOLSEN T M, et al. Atmospheric particulate mercury: Concentrations and size distributions [J]. Atmospheric Environment, 2012, 61: 94-102. doi: 10.1016/j.atmosenv.2012.07.014 [54] CHEN J B, HINTELMANN H, FENG X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada [J]. Geochimica et Cosmochimica Acta, 2012, 90: 33-46. doi: 10.1016/j.gca.2012.05.005 [55] KURIEN U, HU Z Z, LEE H, et al. Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticles [J]. RSC Advances, 2017, 7(71): 45010-45021. doi: 10.1039/C7RA07401H [56] PIRRONE N, CINNIRELLA S, FENG X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources [J]. Atmospheric Chemistry and Physics, 2010, 10(13): 5951-5964. doi: 10.5194/acp-10-5951-2010 [57] HU Y, CHENG H F. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations [J]. Environmental Pollution, 2016, 218: 1209-1221. doi: 10.1016/j.envpol.2016.08.077 [58] GALBREATH K C, ZYGARLICKE C J. Mercury transformations in coal combustion flue gas [J]. Fuel Processing Technology, 2000, 65/66: 289-310. doi: 10.1016/S0378-3820(99)00102-2 [59] PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003, 82(2/3): 89-165. [60] HALL B, SCHAGER P, LINDQVIST O. Chemical reactions of mercury in combustion flue gases [J]. Water Air & Soil Pollution, 1991, 56(1): 3-14. [61] NIKSA S, NAIK C V, BERRY M S, et al. Interpreting enhanced Hg oxidation with Br addition at Plant Miller [J]. Fuel Processing Technology, 2009, 90(11): 1372-1377. doi: 10.1016/j.fuproc.2009.05.022 [62] NORTON G A, YANG H Q, BROWN R C, et al. Heterogeneous oxidation of mercury in simulated post combustion conditions [J]. Fuel, 2003, 82(2): 107-116. doi: 10.1016/S0016-2361(02)00254-5 [63] CZAPLICKA M, PYTA H. Transformations of mercury in processes of solid fuel combustion – review [J]. Archives of Environmental Protection, 2017, 43(4): 82-93. doi: 10.1515/aep-2017-0041 [64] YANG Y J, LIU J, WANG Z, et al. Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition [J]. Proceedings of the Combustion Institute, 2017, 36(3): 4039-4049. doi: 10.1016/j.proci.2016.08.068 [65] SAIZ-LOPEZ A, SITKIEWICZ S P, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition [J]. Nature Communications, 2018, 9: 4796. doi: 10.1038/s41467-018-07075-3 [66] de FOY B, TONG Y D, YIN X F, et al. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight [J]. Atmospheric Environment, 2016, 134: 27-39. doi: 10.1016/j.atmosenv.2016.03.028 [67] HUANG Q, CHEN J B, HUANG W L, et al. Diel variation in mercury stable isotope ratios records photoreduction of PM2.5-bound mercury [J]. Atmospheric Chemistry and Physics, 2019, 19(1): 315-325. doi: 10.5194/acp-19-315-2019 [68] LAM K T, WILHELMSEN C J, SCHWID A C, et al. Computational study on the photolysis of BrHgONO and the reactions of BrHgO• with CH4, C2H6, NO, and NO2: Implications for formation of Hg(II) compounds in the atmosphere [J]. The Journal of Physical Chemistry A, 2019, 123(8): 1637-1647. doi: 10.1021/acs.jpca.8b11216 [69] DUZY C, HYMAN H A. Radiative lifetimes for the B→X transition in HgCl, HgBr, and HgI [J]. Chemical Physics Letters, 1977, 52(2): 345-348. doi: 10.1016/0009-2614(77)80556-3 [70] WADT W R. The electronic structure of HgCl and HgBr [J]. Applied Physics Letters, 1979, 34(10): 658-660. doi: 10.1063/1.90627 [71] JULIENNE P S, KONOWALOW D D, KRAUSS M, et al. Photodissociation of HgCl [J]. Applied Physics Letters, 1980, 36(2): 132-134. doi: 10.1063/1.91396 [72] KRAUSS M, STEVENS W J. Photodissociation of HgBr, XΣ1/2 [J]. Applied Physics Letters, 1981, 39(9): 686-688. doi: 10.1063/1.92869 [73] ARIYA P A, AMYOT M, DASTOOR A, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions [J]. Chemical Reviews, 2015, 115(10): 3760-3802. doi: 10.1021/cr500667e [74] YUE L, ZHOU S D, SUN X Y, et al. Direct room-temperature conversion of methane into protonated formaldehyde: The gas-phase chemistry of mercury among the zinc triad oxide cations [J]. Angewandte Chemie (International Ed. in English), 2018, 57(12): 3251-3255. doi: 10.1002/anie.201712405 [75] KAUPP M, von SCHNERING H G. Gaseous mercury(IV) fluoride, HgF4: An ab initio study [J]. Angewandte Chemie International Edition in English, 1993, 32(6): 861-863. doi: 10.1002/anie.199308611 [76] PONGPRUEKSA P, LIN C J, LINDBERG S E, et al. Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism [J]. Atmospheric Environment, 2008, 42(8): 1828-1845. doi: 10.1016/j.atmosenv.2007.11.020 [77] SEIGNEUR C, VIJAYARAGHAVAN K, LOHMAN K. Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D22): D22306. doi: 10.1029/2005JD006780